Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Nucl Cardiol ; 34: 101786, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472038

RESUMEN

This document on cardiovascular infection, including infective endocarditis, is the first in the American Society of Nuclear Cardiology Imaging Indications (ASNC I2) series to assess the role of radionuclide imaging in the multimodality context for the evaluation of complex systemic diseases with multi-societal involvement including pertinent disciplines. A rigorous modified Delphi approach was used to determine consensus clinical indications, diagnostic criteria, and an algorithmic approach to diagnosis of cardiovascular infection including infective endocarditis. Cardiovascular infection incidence is increasing and is associated with high morbidity and mortality. Current strategies based on clinical criteria and an initial echocardiographic imaging approach are effective but often insufficient in complicated cardiovascular infection. Radionuclide imaging with 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (CT) and single photon emission computed tomography/CT leukocyte scintigraphy can enhance the evaluation of suspected cardiovascular infection by increasing diagnostic accuracy, identifying extracardiac involvement, and assessing cardiac implanted device pockets, leads, and all portions of ventricular assist devices. This advanced imaging can aid in key medical and surgical considerations. Consensus diagnostic features include focal/multi-focal or diffuse heterogenous intense 18F-FDG uptake on valvular and prosthetic material, perivalvular areas, device pockets and leads, and ventricular assist device hardware persisting on non-attenuation corrected images. There are numerous clinical indications with a larger role in prosthetic valves, and cardiac devices particularly with possible infective endocarditis or in the setting of prior equivocal or non-diagnostic imaging. Illustrative cases incorporating these consensus recommendations provide additional clarification. Future research is necessary to refine application of these advanced imaging tools for surgical planning, to identify treatment response, and more.


Asunto(s)
Infecciones Cardiovasculares , Endocarditis , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Consenso , Tomografía Computarizada por Rayos X , Imagen Multimodal , Endocarditis/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único
2.
Artículo en Inglés | MEDLINE | ID: mdl-38466252

RESUMEN

This document on cardiovascular infection, including infective endocarditis, is the first in the American Society of Nuclear Cardiology Imaging Indications (ASNC I2) series to assess the role of radionuclide imaging in the multimodality context for the evaluation of complex systemic diseases with multi-societal involvement including pertinent disciplines. A rigorous modified Delphi approach was used to determine consensus clinical indications, diagnostic criteria, and an algorithmic approach to diagnosis of cardiovascular infection including infective endocarditis. Cardiovascular infection incidence is increasing and is associated with high morbidity and mortality. Current strategies based on clinical criteria and an initial echocardiographic imaging approach are effective but often insufficient in complicated cardiovascular infection. Radionuclide imaging with fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (CT) and single photon emission computed tomography/CT leukocyte scintigraphy can enhance the evaluation of suspected cardiovascular infection by increasing diagnostic accuracy, identifying extracardiac involvement, and assessing cardiac implanted device pockets, leads, and all portions of ventricular assist devices. This advanced imaging can aid in key medical and surgical considerations. Consensus diagnostic features include focal/multi-focal or diffuse heterogenous intense 18F-FDG uptake on valvular and prosthetic material, perivalvular areas, device pockets and leads, and ventricular assist device hardware persisting on non-attenuation corrected images. There are numerous clinical indications with a larger role in prosthetic valves, and cardiac devices particularly with possible infective endocarditis or in the setting of prior equivocal or non-diagnostic imaging. Illustrative cases incorporating these consensus recommendations provide additional clarification. Future research is necessary to refine application of these advanced imaging tools for surgical planning, to identify treatment response, and more.

3.
Clin Infect Dis ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466039

RESUMEN

This document on cardiovascular infection, including infective endocarditis, is the first in the American Society of Nuclear Cardiology Imaging Indications (ASNC I2) series to assess the role of radionuclide imaging in the multimodality context for the evaluation of complex systemic diseases with multi-societal involvement including pertinent disciplines. A rigorous modified Delphi approach was used to determine consensus clinical indications, diagnostic criteria, and an algorithmic approach to diagnosis of cardiovascular infection including infective endocarditis. Cardiovascular infection incidence is increasing and is associated with high morbidity and mortality. Current strategies based on clinical criteria and an initial echocardiographic imaging approach are effective but often insufficient in complicated cardiovascular infection. Radionuclide imaging with 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/CT leukocyte scintigraphy can enhance the evaluation of suspected cardiovascular infection by increasing diagnostic accuracy, identifying extracardiac involvement, and assessing cardiac implanted device pockets, leads, and all portions of ventricular assist devices. This advanced imaging can aid in key medical and surgical considerations. Consensus diagnostic features include focal/multi-focal or diffuse heterogenous intense 18F-FDG uptake on valvular and prosthetic material, perivalvular areas, device pockets and leads, and ventricular assist device hardware persisting on non-attenuation corrected images. There are numerous clinical indications with a larger role in prosthetic valves, and cardiac devices particularly with possible infective endocarditis or in the setting of prior equivocal or non-diagnostic imaging. Illustrative cases incorporating these consensus recommendations provide additional clarification. Future research is necessary to refine application of these advanced imaging tools for surgical planning, to identify treatment response, and more.

4.
Heart Rhythm ; 21(5): e1-e29, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38466251

RESUMEN

This document on cardiovascular infection, including infective endocarditis, is the first in the American Society of Nuclear Cardiology Imaging Indications (ASNC I2) series to assess the role of radionuclide imaging in the multimodality context for the evaluation of complex systemic diseases with multi-societal involvement including pertinent disciplines. A rigorous modified Delphi approach was used to determine consensus clinical indications, diagnostic criteria, and an algorithmic approach to diagnosis of cardiovascular infection including infective endocarditis. Cardiovascular infection incidence is increasing and is associated with high morbidity and mortality. Current strategies based on clinical criteria and an initial echocardiographic imaging approach are effective but often insufficient in complicated cardiovascular infection. Radionuclide imaging with 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (CT) and single photon emission computed tomography/CT leukocyte scintigraphy can enhance the evaluation of suspected cardiovascular infection by increasing diagnostic accuracy, identifying extracardiac involvement, and assessing cardiac implanted device pockets, leads, and all portions of ventricular assist devices. This advanced imaging can aid in key medical and surgical considerations. Consensus diagnostic features include focal/multi-focal or diffuse heterogenous intense 18F-FDG uptake on valvular and prosthetic material, perivalvular areas, device pockets and leads, and ventricular assist device hardware persisting on non-attenuation corrected images. There are numerous clinical indications with a larger role in prosthetic valves, and cardiac devices particularly with possible infective endocarditis or in the setting of prior equivocal or non-diagnostic imaging. Illustrative cases incorporating these consensus recommendations provide additional clarification. Future research is necessary to refine application of these advanced imaging tools for surgical planning, to identify treatment response, and more.


Asunto(s)
Consenso , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos , Humanos , Fluorodesoxiglucosa F18/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacología , Leucocitos , Estados Unidos , Infecciones Cardiovasculares/diagnóstico , Sociedades Médicas , Imagen Multimodal/métodos , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único/métodos , Endocarditis/diagnóstico , Endocarditis/diagnóstico por imagen
8.
Eur J Nucl Med Mol Imaging ; 50(9): 2692-2698, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37058168

RESUMEN

AIM: We performed a systematic survey to assess the existing gaps in Europe in multidisciplinary education for integration of radioligand therapy (RLT) into cancer care and to obtain detailed information on the current limitations and key contents relevant. METHODS: A high-quality questionnaire, with emphasis on survey scales, formulation, and validity of the different items, was designed. An expert validation process was undertaken. The survey was circulated among medical specialties involved in cancer treatment, universities, and nursing organizations. Questionnaires (156) were distributed, and 95 responses received. RESULTS: Sevety-eight percent of medical societies indicated that training in RLT was very important and 12% important. Eighty-eight percent indicated that their specialty training program included RLT. Twenty-six percent were satisfied with the existing structure of training in RLTs. Ninety-four percent indicated that the existing training is based on theory and hands-on experience. Main identified limitations were lack of centers ready to train and of personnel available for teaching. Sixty-five percent indicated that national programs could be expanded. Fifty percent of consulted universities indicated partial or scarce presence of RLT contents in their teaching programs. In 26% of the cases, the students do not have the chance to visit a RLT facility. A large majority of the universities are interested in further expansion of RLT contents in their curriculums. Nursing organizations almost never (44.4%) or occasionally (33.3%) include RLT contents in the education of nurses and technologists. Hands-on experience is almost never (38%) and sometimes (38%) offered. However, 67% of centers indicated high interest in expanding RLT contents. CONCLUSION: Centers involved recognize the importance of the training and indicate a need for inclusion of additional clinical content, imaging analysis, and interpretation as well as extended hands-on training. A concerted effort to adapt current programs and a shift towards multidisciplinary training programs is necessary for proper education in RLT in Europe.


Asunto(s)
Neoplasias , Humanos , Europa (Continente) , Encuestas y Cuestionarios , Neoplasias/radioterapia
10.
Cancers (Basel) ; 15(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36765781

RESUMEN

Advanced image analysis, including radiomics, has recently acquired recognition as a source of biomarkers, although there are some technical and methodological challenges to face for its application in the clinic. Among others, proper phenotyping of metastatic or systemic disease where multiple lesions coexist is an issue, since each lesion contributes to characterization of the disease. Therefore, the radiomic profile of each lesion should be modeled into a more complex architecture able to reproduce each "unit" (lesion) as a part of the "entire" (patient). This work aimed to characterize intra-tumor heterogeneity underpinning metastatic prostate cancer using an exhaustive innovative approach which consist of a i) feature transformation method to build an agnostic (i.e., irrespective of pre-existence knowledge, experience, and expertise) radiomic profile of lesions extracted from [18F]FMCH PET/CT, ii) qualitative assessment of intra-tumor heterogeneity of patients, iii) quantitative representation of the intra-tumor heterogeneity of patients in terms of the relationship between their lesions' profiles, to be associated with prognostic factors. We confirmed that metastatic prostate cancer patients encompassed lesions with different radiomic profiles that exhibited intra-tumor radiomic heterogeneity and that the presence of many radiomic profiles within the same patient impacted the outcome.

11.
Semin Nucl Med ; 53(2): 184-198, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36740487

RESUMEN

IE is a deadly disease requiring prompt diagnosis for adequate patient's management. The diagnosis requires the integration of clinical signs, microbiology data and imaging data and proper discussion within a multidisciplinary team, the endocarditis team. Since the introduction of 18F-FDG-PET/CT and WBC SPECT/CT in the diagnostic algorithm of PVE the nuclear medicine imaging specialists is active part of the Endocarditis Team, requiring proper knowledge of dedicated imaging acquisition protocols, expertise for imaging reading and interpretations to select the best test or combination of tests for each specific clinical situation. In this manuscript, we will review the main technical aspects of each imaging procedure, the most recent literature with specific regards to special challenging populations and provide clinical examples.


Asunto(s)
Desfibriladores Implantables , Endocarditis , Infecciones Relacionadas con Prótesis , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Radiofármacos
12.
Eur J Nucl Med Mol Imaging ; 50(3): 892-907, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36334104

RESUMEN

INTRODUCTION: Medullary thyroid cancer (MTC) is a rare malignant tumour of the parafollicular C-cells with an unpredictable clinical course and currently suboptimal diagnostic and therapeutic options, in particular in advanced disease. Overexpression of cholecystokinin-2 receptors (CCK2R) represents a promising avenue to diagnostic imaging and targeted therapy, ideally through a theranostic approach. MATERIALS AND METHODS: A translational study (GRAN-T-MTC) conducted through a Phase I multicentre clinical trial of the indium-111 labelled CP04 ([111In]In-CP04), a CCK2R-seeking ligand was initiated with the goal of developing a theranostic compound. Patients with proven advanced/metastatic MTC or short calcitonin doubling time were enrolled. A two-step concept was developed through the use of low- and high-peptide mass (10 and 50 µg, respectively) for safety assessment, with the higher peptide mass considered appropriate for therapeutic application. Gelofusine was co-infused in a randomized fashion in the second step for the evaluation of potential reduction of the absorbed dose to the kidneys. Imaging for the purpose of biodistribution, dosimetry evaluation, and diagnostic assessment were performed as well as pre-, peri-, and postprocedural clinical and biochemical assessment. RESULTS: Sixteen patients were enrolled. No serious adverse events after application of the compound at both peptide amounts were witnessed; transient tachycardia and flushing were observed in two patients. No changes in biochemistry and clinical status were observed on follow-up. Preliminary dosimetry assessment revealed the highest dose to urinary bladder, followed by the kidneys and stomach wall. The effective dose for 200 MBq of [111In]In-CP04 was estimated at 7±3 mSv and 7±1 mSv for 10 µg and 50 µg CP04, respectively. Administration of Gelofusine reduced the dose to the kidneys by 53%, resulting in the organ absorbed dose of 0.044±0.019 mSv/MBq. Projected absorbed dose to the kidneys with the use of [177Lu]Lu-CP04 was estimated at 0.9±0.4 Gy/7.4 GBq. [111In]In-CP04 scintigraphy was positive in 13 patients (detection rate of 81%) with superior diagnostic performance over conventional imaging. CONCLUSION: In the present study, [111In]In-CP04 was shown to be a safe and effective radiopharmaceutical with promising theranostic characteristics for patients with advanced MTC.


Asunto(s)
Receptor de Colecistoquinina B , Neoplasias de la Tiroides , Humanos , Receptor de Colecistoquinina B/metabolismo , Receptor de Colecistoquinina B/uso terapéutico , Medicina de Precisión , Poligelina/uso terapéutico , Ligandos , Distribución Tisular , Neoplasias de la Tiroides/diagnóstico por imagen , Neoplasias de la Tiroides/tratamiento farmacológico , Péptidos
14.
Diagnostics (Basel) ; 12(11)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36428890

RESUMEN

BACKGROUND: The aim of this study was to evaluate the effectiveness of positron emission tomography/computed tomography with [18F]-fludeoxyglucose (FDG-PET/CT) and radiomics analysis in detecting differences between the native aorta and the abdominal aortic allograft after the total eradication of infection in patients undergoing infected graft removal and in situ reconstruction with cryopreserved allografts. METHODS: Between January 2008 and December 2018, 56 vascular reconstructions with allografts have been performed at our department. The present series included 12 patients undergoing abdominal aortic in situ reconstruction with cryopreserved allografts. During the follow-up, all patients underwent a total-body [18F]FDG PET/CT with subsequent radiomics analysis. In all patients, a comparative analysis between the data extracted from native aorta and cryopreserved graft for each patient was performed. RESULTS: All patients were male with a mean age of 72.8 years (range 63-84). Mean duration of follow-up was 51.3 months (range 3-120). During the follow-up, 2 patients (16.7%) needed a redo allograft-related surgical intervention. Overall, the rate of allograft dilatation was 33.3%. No patient had a redo infection during the follow-up. Radiomics analysis showed a different signature of implanted allograft and native aorta. Comparative analysis between the native aortas and cryopreserved allografts (dilated or not) showed several statistical differences for many texture features. CONCLUSIONS: The higher metabolic activity of allografts could indicate a state of immune-mediated degeneration. This theory should be proven with prospective, multicentric studies with larger sample sizes.

15.
Eur Radiol Exp ; 6(1): 53, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36344838

RESUMEN

NAVIGATOR is an Italian regional project boosting precision medicine in oncology with the aim of making it more predictive, preventive, and personalised by advancing translational research based on quantitative imaging and integrative omics analyses. The project's goal is to develop an open imaging biobank for the collection and preservation of a large amount of standardised imaging multimodal datasets, including computed tomography, magnetic resonance imaging, and positron emission tomography data, together with the corresponding patient-related and omics-related relevant information extracted from regional healthcare services using an adapted privacy-preserving model. The project is based on an open-source imaging biobank and an open-science oriented virtual research environment (VRE). Available integrative omics and multi-imaging data of three use cases (prostate cancer, rectal cancer, and gastric cancer) will be collected. All data confined in NAVIGATOR (i.e., standard and novel imaging biomarkers, non-imaging data, health agency data) will be used to create a digital patient model, to support the reliable prediction of the disease phenotype and risk stratification. The VRE that relies on a well-established infrastructure, called D4Science.org, will further provide a multiset infrastructure for processing the integrative omics data, extracting specific radiomic signatures, and for identification and testing of novel imaging biomarkers through big data analytics and artificial intelligence.


Asunto(s)
Inteligencia Artificial , Medicina de Precisión , Medicina de Precisión/métodos , Bancos de Muestras Biológicas , Tomografía de Emisión de Positrones , Biomarcadores
16.
Sci Rep ; 12(1): 19607, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36380083

RESUMEN

Personalized medicine is the future of medical practice. In oncology, tumor heterogeneity assessment represents a pivotal step for effective treatment planning and prognosis prediction. Despite new procedures for DNA sequencing and analysis, non-invasive methods for tumor characterization are needed to impact on daily routine. On purpose, imaging texture analysis is rapidly scaling, holding the promise to surrogate histopathological assessment of tumor lesions. In this work, we propose a tree-based representation strategy for describing intra-tumor heterogeneity of patients affected by metastatic cancer. We leverage radiomics information extracted from PET/CT imaging and we provide an exhaustive and easily readable summary of the disease spreading. We exploit this novel patient representation to perform cancer subtyping according to hierarchical clustering technique. To this purpose, a new heterogeneity-based distance between trees is defined and applied to a case study of prostate cancer. Clusters interpretation is explored in terms of concordance with severity status, tumor burden and biological characteristics. Results are promising, as the proposed method outperforms current literature approaches. Ultimately, the proposed method draws a general analysis framework that would allow to extract knowledge from daily acquired imaging data of patients and provide insights for effective treatment planning.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Pronóstico , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Carga Tumoral
17.
Diagnostics (Basel) ; 12(8)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36010311

RESUMEN

INTRODUCTION: Studies have shown that the Ki-67 index is a valuable biomarker for the diagnosis, and classification of gastro-entero-pancreatic neuroendocrine tumors (GEP-NETs). We re-evaluated the expression of Ki-67 based on the intensity of the stain, basing our hypothesis on the fact that the Ki-67 protein is continuously degraded. BACKGROUND: The aim was to evaluate whether a new scoring method would be more effective in classifying NETs by reducing staining heterogeneity. METHODS: Patients with GEP-NET (n = 87) were analyzed. The classification difference between the two methods was determined. RESULTS: The classification changed significantly when the Ki-67 semiquantal index was used. The percentage of G1 patients increased from 18.4% to 60.9%, while the G2 patients decreased from 66.7% to 29.9% and the G3 patients also decreased from 14.9% to 9.2%. Moreover, it was found that the traditional Ki-67 was not significantly related to the overall survival (OS), whereas the semiquantal Ki-67 was significantly related to the OS. CONCLUSIONS: The new quantification was a better predictor of OS and of tumor classification. Therefore, it could be used both as a marker of proliferation and as a tool to map tumor dynamics that can influence the diagnosis and guide the choice of therapy.

18.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-36015106

RESUMEN

FAP-targeted radiopharmaceuticals represent a breakthrough in cancer imaging and a viable option for therapeutic applications. OncoFAP is an ultra-high-affinity ligand of FAP with a dissociation constant of 680 pM. OncoFAP has been recently discovered and clinically validated for PET imaging procedures in patients with solid malignancies. While more and more clinical validation is becoming available, the need for scalable and robust procedures for the preparation of this new class of radiopharmaceuticals continues to increase. In this article, we present the development of automated radiolabeling procedures for the preparation of OncoFAP-based radiopharmaceuticals for cancer imaging and therapy. A new series of [68Ga]Ga-OncoFAP, [177Lu]Lu-OncoFAP and [18F]AlF-OncoFAP was produced with high radiochemical yields. Chemical and biochemical characterization after radiolabeling confirmed its excellent stability, retention of high affinity for FAP and absence of radiolysis by-products. The in vivo biodistribution of [18F]AlF-NOTA-OncoFAP, a candidate for PET imaging procedures in patients, was assessed in mice bearing FAP-positive solid tumors. The product showed rapid accumulation in solid tumors, with an average of 6.6% ID/g one hour after systemic administration and excellent tumor-to-healthy organs ratio. We have developed simple, quick, safe and robust synthetic procedures for the preparation of theranostic OncoFAP-compounds based on Gallium-68, Lutetium-177 and Fluorine-18 using the commercially available FASTlab synthesis module.

19.
Curr Cardiol Rep ; 24(7): 879-891, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35696046

RESUMEN

PURPOSE OF REVIEW: Cardiovascular infections are serious disease associated with high morbidity and mortality. Their diagnosis is challenging, requiring a proper management for a prompt recognition of the clinical manifestations, and a multidisciplinary approach involving cardiologists, cardiothoracic surgeons, infectious diseases specialist, imagers, and microbiologists. Imaging plays a central role in the diagnostic workout, including molecular imaging techniques. In this setting, two different strategies might be used to image infections: the first is based on the use of agents targeting the microorganism responsible for the infection. Alternatively, we can target the components of the pathophysiological changes of the inflammatory process and/or the host response to the infectious pathogen can be considered. Understanding the strength and limitations of each strategy is crucial to select the most appropriate imaging tool. RECENT FINDINGS: Currently, multislice computed tomography (MSCT) and nuclear imaging (18F-fluorodeoxyglucose positron emission tomography/computed tomography, and leucocyte scintigraphy) are part of the diagnostic strategies. The main role of nuclear medicine imaging (PET/CT and SPECT/CT) is the confirmation of valve/CIED involvement and/or associated perivalvular infection and the detection of distant septic embolism. Proper patients' preparation, imaging acquisition, and reconstruction as well as imaging reading are crucial to maximize the diagnostic information. In this manuscript, we described the use of molecular imaging techniques, in particular WBC imaging, in patients with infective endocarditis, cardiovascular implantable electronic device infections, and infections of composite aortic graft, underlying the strength and limitations of such approached as compared to the other imaging modalities.


Asunto(s)
Endocarditis , Infecciones Relacionadas con Prótesis , Endocarditis/diagnóstico por imagen , Fluorodesoxiglucosa F18 , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Infecciones Relacionadas con Prótesis/diagnóstico por imagen , Radiofármacos
20.
Cancers (Basel) ; 14(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35681572

RESUMEN

AIM: to exploit tissue-specific interactions among thymic epithelial tumor (TETs) cells and extra-domain B fibronectin (ED-B FN). MATERIAL AND METHODS: The stromal pattern of ED-B FN expression was investigated through tumor specimen collection and molecular profiling in 11 patients with recurrent TETs enrolled in prospective theragnostic phase I/II trials with Radretumab, an ED-B FN specific recombinant human antibody. Radretumab radioimmunotherapy (R-RIT) was offered to patients who exhibited the target expression. Experiments included immunochemical analysis (ICH), cell cultures, immunophenotypic analysis, Western blot, slot-blot assay, and quantitative RT-PCR of two primary thymoma cultures we obtained from patients' samples and in the Ty82 cell line. RESULTS: The in vivo scintigraphic demonstration of ED-B FN expression resulted in R-RIT eligibility in 8/11 patients, of which seven were treated. The best observed response was disease stabilization (n = 5/7) with a duration of 4.3 months (range 3-5 months). IHC data confirmed high ED-B FN expression in the peripherical microenvironment rather than in the center of the tumor, which was more abundant in B3 thymomas. Further, there was a predominant expression of ED-B FN by the stromal cells of the thymoma microenvironment rather than the epithelial cells. CONCLUSIONS: Our data support the hypothesis that thymomas induce stromal cells to shift FN production to the ED-B subtype, likely representing a favorable hallmark for tumor progression and metastasis. Collectively, results derived from clinical experience and molecular insights of the in vitro experiments suggested that R-RIT inefficacy is unlikely related to low target expression in TET, being the mechanism of R-RIT resistance eventually related to patients' susceptibility (i.e., inherent characteristics), the pattern expression of the target (i.e., at periphery), the biological characteristics of the tumor (i.e., aggressive and resistant phenotypes), and/or to format of the target agent (i.e., 131I-L19-SIP).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...