Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(40): 26958-26971, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37585177

RESUMEN

Inspired by photosystem II (PS II), Mn oxide based electrocatalysts have been repeatedly investigated as catalysts for the electrochemical oxygen evolution reaction (OER), the anodic reaction in water electrolysis. However, a comparison of the conditions in biological OER catalysed by the water splitting complex CaMn4Ox with the requirements for an electrocatalyst for industrially relevant applications reveals fundamental differences. Thus, a systematic development of artificial Mn-based OER catalysts requires both a fundamental understanding of the catalytic mechanisms as well as an evaluation of the practicality of the system for industrial scale applications. Experimentally, both aspects can be approached using in situ and operando methods including spectroscopy. This paper highlights some of the major challenges common to different operando investigation methods and recent insights gained with them. To this end, vibrational spectroscopy, especially Raman spectroscopy, absorption techniques in the bandgap region and operando X-ray spectroelectrochemistry (SEC), both in the hard and soft X-ray regime are particularly focused on here. Technical challenges specific to each method are discussed first, followed by challenges that are specific to Mn oxide based systems. Finally, recent in situ and operando studies are reviewed. This analysis shows that despite the technical and Mn specific challenges, three specific key features are common to most of the studied systems with significant OER activity: structural disorder, Mn oxidation states between III and IV, and the appearance of layered birnessite phases in the active regime.

2.
ACS Omega ; 8(22): 19613-19624, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305241

RESUMEN

Environmentally friendly and sustainable methods to protect hot-dip galvanized (HDG) steel from corrosion are extensively studied. Films of the biopolymer polyelectrolyte chitosan were ionically cross-linked in this work with the well-known corrosion inhibitors phosphate and molybdate. Layers on this basis are presented as components in a protective system and could, e.g., be applied in pretreatments similar to a conversion coating. For the preparation of the chitosan-based films, a procedure involving sol-gel chemistry and wet-wet application was utilized. Homogeneous films of few micrometers thickness were obtained on HDG steel substrates after thermal curing. Properties of chitosan-molybdate and chitosan-phosphate films were compared with purely passive epoxysilane-cross-linked chitosan, and pure chitosan. Delamination behavior of a poly(vinyl butyral) (PVB) weak model top coating studied by scanning Kelvin probe (SKP) showed an almost linear time dependence over >10 h on all systems. Delamination rates were 0.28 mm h-1 (chitosan-molybdate) and 0.19 mm h-1 (chitosan-phosphate), ca. 5% of a non-cross-linked chitosan reference and slightly higher than of the epoxsyilane cross-linked chitosan. Immersion of the treated zinc samples over 40 h in 5% NaCl solution yielded a 5-fold increase of the resistance in the chitosan-molybdate system, as evidenced by electrochemical impedance spectroscopy (EIS). Ion exchange of electrolyte anions with molybdate and phosphate triggers corrosion inhibition, presumably by reaction with the HDG surface as well described in the literature for these inhibitors. Thus, such surface treatments have potential for application, e.g., in temporary corrosion protection.

3.
Phys Chem Chem Phys ; 25(16): 11845-11857, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-36928717

RESUMEN

Filiform corrosion (FFC) is characteristic of metals such as aluminium and magnesium, usually takes place on coated metals, and spreads from coating defects in the form of filaments with a width on the order of 100 µm. In this work, in situ and operando Raman spectroscopy and optical microscopy were used to characterize the composition and distribution of corrosion products inside growing filaments. The filament head contains water (OH stretching modes, 3000-3600 cm-1), and corrosion products based on aluminium oxide with both tetrahedrally (840 cm-1) and octahedrally (600 cm-1) coordinated Al3+, and with some hydroxyl group content (3075, 1420, 1164 cm-1). Remarkable is the prominent presence of structural motifs as in γ-AlH3 (1045, 1495 cm-1). The tail contains predominantly aluminium oxide with octahedrally coordinated Al3+ and in addition carbonate (1100 cm-1) and aluminium chloride (347 cm-1). Video recordings of the active filigree show hydrogen evolution inside the active head and a very fast precipitation of corrosion products. Re-dissolution, transport and re-formation of the corrosion products is also observed, accompanying start-stop-cycles of the propagation of FFC; this mechanism leads to wavy surface morphologies by lifting of certain coating areas after the passage of the corrosion front as evidenced by 3D optical profilometer analysis. When exposed to the acidic head conditions for a sufficient time, the initiation of other forms of localised corrosion, such as pitting, is possible, which in turn facilitates further propagation of the filament. The in situ detection of hydride which transforms into the typical aluminium corrosion products in due course points to a prominent role of hydride as intermediate in the aqueous corrosion of aluminium.

4.
J Chem Phys ; 157(22): 224702, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36546798

RESUMEN

The inhibition of the electrochemical oxygen reduction reaction (ORR) by zinc corrosion products plays an important role in the corrosion protection of galvanized steel. Hence, the electrocatalytic mechanism of the ORR on electrodeposited zinc hydroxide-based model corrosion products was investigated by in situ and operando attenuated total reflection infrared (ATR-IR) spectroscopy, supplemented by density functional theory (DFT) calculations. Model corrosion products containing flake-like crystalline Zn5(NO3)2(OH)8 were cathodically electrodeposited on germanium(100) electrodes from a zinc nitrate precursor electrolyte. Substantial amounts of the films are non-crystalline, and their surfaces predominantly consist of zinc oxide and hydroxide species, as evidenced by x-ray photoelectron spectroscopy. ATR-IR spectra show a peak at 1180 cm-1 during cathodic currents in O2-saturated NaClO4 solution. This peak is assigned to a surface-bound superoxide, the only ORR intermediate detected. Absorbance from the intermediate increases with increasing cathodic current, indicating an increase in surface concentration of superoxide intermediates at larger ORR current densities. The zinc hydroxide ages in the experiments, most likely by a transformation into zinc oxide, consistent with the observed decrease in absorbance over time of the OH bending mode of zinc hydroxide at 1380 cm-1. This aging is a time-dependent chemical process, implying that pure chemical aging is important in actual corrosion products as well. DFT calculations of adsorbed superoxide yield a Zn-O bond length similar to the bond length in Zn-O, thus enhancing superoxide interaction with undercoordinated tetrahedral Zn2+ sites on the surface. Thus, such active sites catalyze the first reduction step in the ORR.

5.
Rev Sci Instrum ; 93(8): 085107, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050070

RESUMEN

A detailed description of a flexible and portable atomic layer deposition (ALD) system is presented for conducting in situ Fourier transform infrared (FTIR) absorption spectroscopy studies during the evolution and growth of ALD films. The system is directly integrated with a commercial FTIR spectrometer (Bruker Vertex 80V) to avoid the necessity of an external optical path to the instrument, thereby mitigating complexity and optical losses. In this work, we use potassium bromide (KBr) with a 5 nm layer of sputtered Si as a substrate due to higher infrared transmittance when compared to a single-side polished Si wafer. The FTIR absorption study is conducted at normal incidence in transmission mode using a deuterated L-alanine doped triglycine sulfate (DTGS) detector owing to its potential applicability for reliable measurements at wavenumbers below ∼700 cm-1. We demonstrate this by measuring ex situ the transverse optical phonon of bulk Al2O3 centered at 680 cm-1. The integrity and functionality of the system to track the nucleation stage are validated by conducting in situ FTIR absorption measurements of Al2O3 using tri-methyl aluminum (TMA) and H2O. The measured IR absorption spectra for the Al2O3 growth after each cycle of TMA and H2O show the formation and removal of CH3 (2800-3000 cm-1) groups on the substrate surface and CH4 (3016 and 1306 cm-1) molecules in the reactor, thus confirming the successful tracking of ligand exchange. Thus, this instrument, together with the choice of KBr as substrate, can enable straightforward ALD nucleation studies using a DTGS detector having sufficient signal without additional optical setup and modifications to off-the-shelf FTIR systems that allow low wavenumber experiments.

6.
Phys Chem Chem Phys ; 24(8): 4809-4819, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35147613

RESUMEN

The in situ control of reversible protein adsorption to a surface is a critical step towards biofouling prevention and finds utilisation in bioanalytical applications. In this work, adsorption of peptides is controlled by employing the electrode potential induced, reversible change of germanium (100) surface termination between a hydrophobic, hydrogen terminated and a hydrophilic, hydroxyl terminated surface. This simple but effective 'smart' interface is used to direct adsorption of two peptides models, representing the naturally highly abundant structural motifs of amphipathic helices and coiled-coils. Their structural similarity coincides with their opposite overall charge and hence allows the examination of the influence of charge and hydrophobicity on adsorption. Polarized attenuated total reflection infrared (ATR-IR) spectroscopy at controlled electrode potential has been used to follow the adsorption process at physiological pH in deuterated buffer. The delicate balance of hydrophobic and electrostatic peptide/surface interactions leads to two different processes upon switching that are both observed in situ: reversible adsorption and reversible reorientation. Negatively charged peptide adsorption can be fully controlled by switching to the hydrophobic interface, while the same switch causes the positively charged, helical peptide to tilt down. This principle can be used for 'smart' adsorption control of a wider variety of proteins and peptides and hence find application, as e.g. a bioanalytical tool or functional biosensor.


Asunto(s)
Germanio , Adsorción , Germanio/química , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Espectrofotometría Infrarroja , Propiedades de Superficie
7.
Environ Health Perspect ; 130(1): 15001, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35080434

RESUMEN

BACKGROUND: Pregnancy, infancy, and childhood are sensitive windows for environmental exposures. Yet the health effects of exposure to nano- and microplastics (NMPs) remain largely uninvestigated or unknown. Although plastic chemicals are a well-established research topic, the impacts of plastic particles are unexplored, especially with regard to early life exposures. OBJECTIVES: This commentary aims to summarize the knowns and unknowns around child- and pregnancy-relevant exposures to NMPs via inhalation, placental transfer, ingestion and breastmilk, and dermal absorption. METHODS: A comprehensive literature search to map the state of the science on NMPs found 37 primary research articles on the health relevance of NMPs during early life and revealed major knowledge gaps in the field. We discuss opportunities and challenges for quantifying child-specific exposures (e.g., NMPs in breastmilk or infant formula) and health effects, in light of global inequalities in baby bottle use, consumption of packaged foods, air pollution, hazardous plastic disposal, and regulatory safeguards. We also summarize research needs for linking child health and NMP exposures and address the unknowns in the context of public health action. DISCUSSION: Few studies have addressed child-specific sources of exposure, and exposure estimates currently rely on generic assumptions rather than empirical measurements. Furthermore, toxicological research on NMPs has not specifically focused on child health, yet children's immature defense mechanisms make them particularly vulnerable. Apart from few studies investigating the placental transfer of NMPs, the physicochemical properties (e.g., polymer, size, shape, charge) driving the absorption, biodistribution, and elimination in early life have yet to be benchmarked. Accordingly, the evidence base regarding the potential health impacts of NMPs in early life remains sparse. Based on the evidence to date, we provide recommendations to fill research gaps, stimulate policymakers and industry to address the safety of NMPs, and point to opportunities for families to reduce early life exposures to plastic. https://doi.org/10.1289/EHP9086.


Asunto(s)
Microplásticos , Plásticos , Niño , Salud Infantil , Exposición a Riesgos Ambientales , Femenino , Humanos , Lactante , Placenta , Embarazo , Distribución Tisular
8.
Commun Chem ; 5(1): 71, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-36697905

RESUMEN

Core-shell particles with thin noble metal shells represent an attractive material class with potential for various applications ranging from catalysis to biomedical and pharmaceutical applications to optical crystals. The synthesis of well-defined core-shell architectures remains, however, highly challenging. Here, we demonstrate that atomically-thin and homogeneous platinum shells can be grown via a colloidal synthesis method on a variety of gold nanostructures ranging from spherical nanoparticles to nanorods and nanocubes. The synthesis is based on the exchange of low binding citrate ligands on gold, the reduction of platinum and the subsequent kinetically hindered growth by carbon monoxide as strong binding ligand. The prerequisites for homogeneous growth are low core-binding ligands with moderate fast ligand exchange in solution, a mild reducing agent to mitigate homonucleation and a strong affinity of a second ligand system that can bind to the shell's surface. The simplicity of the described synthetic route can potentially be adapted to various other material libraries to obtain atomically smooth core-shell systems.

9.
Anal Chem ; 93(49): 16320-16329, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34817990

RESUMEN

Alzheimer's disease (AD) has become highly relevant in aging societies, yet the fundamental molecular basis for AD is still poorly understood. New tools to study the undergoing structural conformation changes of amyloid beta (Aß) peptides, the pathogenic hallmark of AD, could play a crucial role in the understanding of the underlying mechanisms of misfolding and cytotoxicity of this peptide. It has been recently reported that Zn2+ interacts with Aß and changes its aggregation pathway away from less harmful fibrillar forms to more toxic species. Here, we present a versatile platform based on a set of sub-10 nm nanogap electrodes for the manipulation and sensing of biomolecules in the physiological condition at a low copy number, where molecules are trapped via dielectrophoresis (DEP) across the nanogap, which also serves as a surface-enhanced Raman spectroscopy hotspot. In this study, we demonstrate that our electrode nanogap platform can be used to study the structural difference between Aß40 and ZnAß40 peptides at different aggregation stages in the physiologically relevant concentration and in solution phase. The Raman spectroscopic signatures of the DEP-captured neuropeptides prove the device to be attractive as a label-free bioanalytical tool.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Electrodos , Humanos , Espectrometría Raman , Zinc
10.
Chempluschem ; 86(1): 176-183, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33476099

RESUMEN

Intrinsically fluorescent carbon dots may form the basis for a safer and more accurate sensor technology for digital counting in bioanalytical assays. This work presents a simple and inexpensive synthesis method for producing fluorescent carbon dots embedded in hollow silica particles. Hydrothermal treatment at low temperature (160 °C) of microporous silica particles in presence of urea and citric acid results in fluorescent, microporous and hollow nanocomposites with a surface area of 12 m2 /g. High absolute zeta potential (-44 mV) at neutral pH demonstrates the high electrosteric stability of the nanocomposites in aqueous solution. Their fluorescence emission at 445 nm is remarkably stable in aqueous dispersion under a wide pH range (3-12) and in the dried state. The biocompatibility of the composite particles is excellent, as the particles were found to show low genotoxicity at exposures up to 10 µg/cm2 .

11.
Phys Chem Chem Phys ; 22(16): 8768-8780, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32285064

RESUMEN

The mechanism of the hydrogen evolution reaction, although intensively studied for more than a century, remains a fundamental scientific challenge. Many important questions are still open, making it elusive to establish rational principles for electrocatalyst design. In this work, a comprehensive investigation was conducted to identify which dynamic phenomena at the electrified interface are prerequisite for the formation of molecular hydrogen. In fact, what we observe as an onset of the macroscopic faradaic current originates from dynamic structural changes in the double layer, which are entropic in nature. Based on careful analysis of the activation process, an electrocatalytic descriptor is introduced, evaluated and experimentally confirmed. The catalytic activity descriptor is named as the potential of minimum entropy. The experimentally verified catalytic descriptor reveals significant potential to yield innovative insights for the design of catalytically active materials and interfaces.

12.
RSC Adv ; 10(48): 29018-29030, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35520046

RESUMEN

Fused silica crucibles are commonly used in the fabrication process of solar grade silicon ingots. These crucibles are manufactured from high purity natural quartz sand and as a consequence, their properties are influenced by the presence of water and hydroxyls in the raw quartz. In this work, diffuse reflectance IR, 1H magic angle spinning NMR, and Raman spectroscopy were used to investigate the influence of thermal treatment on water and hydroxyl groups in high purity natural quartz sand. Most of the water in dry sand is present in the form of closed inclusions within the quartz grains which were detected in Raman imaging studies, even after thermally treating the samples at 600 °C. Only after heating to 900 °C did this water completely vanish, most likely as a result of rupturing of the inclusions. However, newly formed OH groups, identified as isolated and hydrogen bound OH were observed as products of the reaction between water and quartz. Similarly, liquid water was observed in NMR spectra even after treatment at 600 °C while at temperatures >900 °C, only non-interacting silanol groups were present. The comparison of the temperature dependence of the IR and NMR spectra also yields insight into the assignment of the OH stretching mode region of the IR spectrum in this system. The intensity of water related bands decreases while the intensity of OH bands first increases and then decreases with increasing temperature. The band intensity of Al-rich defects as well as the characteristic feature at 3200 cm-1 does not follow the temperature dependence of typical water peaks. It is also shown that leaching the quartz sand in HF solution helps to remove water from inclusions, likely by forming pathways for fluid flow inside the quartz grains. Milling of the samples caused formation of an additional type of hydroxyl group, possibly due to partial amorphisation of the surfaces of the quartz grains surface during the process. The results improve the basis for a knowledge-based processes development for the processing of high purity natural quartz.

13.
Phys Chem Chem Phys ; 21(44): 24361-24372, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31657412

RESUMEN

Several different time-frequency transforms from signal processing were used to analyze electrochemical noise data to determine frequency components contained within the noise record and their time evolution. Bilinear time-frequency representations (TFR) based on the Wigner-Ville distribution (WVD) were compared with a special focus on the reassigned smoothed pseudo WVD (RSPWVD). Spectra obtained with WVD were compared with traditional linear time-frequency representations, such as short time Fourier transform and wavelet transform. Comparison to other TFRs showed that the RSPWVD suppressed artifacts, provided better resolution of the time-frequency analysis in both time and frequency domains, and improved the overall readability of a representation. The obtained spectra from RSPWVD were consistent with the results from DWT, but permitted a more comprehensive analysis of transients. Consequently, RSPWVD is suitable for electrochemical noise analysis. In the presence of Cl-, RSPWVD showed that the passivity of Al was compromised, as evidenced by the presence of various current transients in the frequency range from 10-2 to 1 Hz.

14.
Phys Chem Chem Phys ; 21(20): 10457-10469, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31070222

RESUMEN

Manganese-based systems are considered as candidate electrocatalysts for the electrochemical oxygen evolution reaction (OER), because of their abundance in biochemical oxygen producing catalyst systems. In this work, the surface of metallic manganese was investigated in situ and operando in potentiodynamic cyclic voltammetry (CV) experiments and potentiostatic chronoamperometry (CA) experiments in NaOH. In both cases, the surfaces were initially reduced. At corresponding potentials, no oxide species can be detected by Raman spectroscopy, though electrochemical data and the absence of dissolution above the reversible potential for reactions of type Mn → MnII indicate that the material is passive. The CV shows anodic peaks at potentials in line with expectations on the basis of thermodynamic data for the oxidation to Mn3O4 and Mn2O3; the thickness of the surface layer increases by a few nm during these peaks, as evidenced by spectroscopic ellipsometry. Dissolution of Mn as evidenced by downstream electrolyte analysis by inductively coupled plasma mass spectrometry in a scanning flow cell (SFC-ICP-MS) of the electrolyte is negligible in the range of electrode potential vs. Ag|AgCl|3 M KCl, EAg|AgCl, up to 0.3 V. Remarkably, Raman spectra already show the occurrence of α-MnO2 at EAg|AgCl > -0.25 V, which is ca. 0.5 V below the potential at which oxidation to MnO2 is expected. This observation is attributed to disproportionation above a certain level of MnIII. For EAg|AgCl > 0.4 V, dissolution sets in, at a constant layer thickness. Above the onset potential of the OER, at EAg|AgCl≈ 0.6 V, SFC-ICP-MS analysis shows fast dissolution, and the oxide layer thickness is constant or increases. CA experiments during the OER show strong dissolution, and the re-formation of a strongly disordered, ß-MnO2-like oxide, which exists in a quasi-stationary state at the interface. Several CV cycles increase the dissolution per cycle and the fraction of α-MnO2 on the surface which cannot be reduced. The high dissolution currents show that metallic Mn is hardly suitable as an OER catalyst, however, at least the MnIV oxides remain stationarily present in the system.

15.
Langmuir ; 35(21): 6888-6897, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31050896

RESUMEN

The effect of the solvent on the formation of thiol self-assembled monolayers (SAMs) on oxide-covered, reactive metals is more involved than in the well-studied gold-thiol system. In this work, copper covered with a native oxide was modified with 1-octadecanethiol (ODT) in either tetrahydrofuran or ethanol. Infrared spectroscopy indicated the formation of crystalline chain packing of alkyl chains from both solvents. Surface coverage was approximately equal in both systems, with differences in tilt angles of the chains. A detailed analysis by X-ray photoelectron spectroscopy showed the formation of Cu2S and copper-bound carbon when the adsorption was carried out in ethanol. This observation can be explained by the cleavage of the C-S bond in ODT during adsorption. Based on the analogy of preparations, we reason that the solvation of ODT in ethanol must be such that it weakens the C-S bond in ODT, thus enabling the cleavage of this bond. Based on the evidence presented here, it is not possible to distinguish between surface solvation and bulk solvation. Electrochemical linear sweep voltammetry shows that SAMs from both solvents have an enhancing protective effect compared to the native oxide layer. The results from this work show interesting possibilities for the preparation of adsorbed monolayers with chemical interaction to reactive metals, with some similarities to carbene-based SAMs.

16.
Rev Sci Instrum ; 90(4): 043908, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31043001

RESUMEN

Multiple beam interferometry (MBI) evolved as a powerful tool for the simultaneous evaluation of thin film thicknesses and refractive indices in Surface Forces Apparatus (SFA) measurements. However, analysis has relied on simplifications for providing fast or simplified analysis of recorded interference spectra. Here, we describe the implementation of new optics and a generalized fitting approach to 4 × 4 transfer matrix method simulations for the SFA. Layers are described by dispersive complex refractive indices, thicknesses, and Euler angles that can be fitted, providing modeling for birefringent or colored layers. Normalization of data by incident light intensities is essential for the implementation of a fitting approach. Therefore, a modular optical system is described that can be retrofit to any existing SFA setup. Real-time normalization of spectra by white light is realized, alignment procedures are considerably simplified, and direct switching between transmission and reflection modes is possible. A numerical approach is introduced for constructing transfer matrices for birefringent materials. Full fitting of data to the simulation is implemented for arbitrary multilayered stacks used in SFA. This enables self-consistent fitting of mirror thicknesses, birefringence, and relative rotation of anisotropic layers (e.g., mica), evaluation of reflection and transmission mode spectra, and simultaneous fitting of thicknesses and refractive indices of media confined between two surfaces. In addition, a fast full spectral fitting method is implemented for providing a possible real-time analysis with up to 30 fps. We measure and analyze refractive indices of confined cyclohexane, the thickness of lipid bilayers, the thickness of metal layers, the relative rotation of birefringent materials, contact widths, as well as simultaneous fitting of both reflection and transmission mode spectra of typical interferometers. Our analyses suggest a number of best practices for conducting SFA and open MBI in an SFA for increasingly complex systems, including metamaterials, multilayered anisotropic layers, and chiral layers.

17.
Langmuir ; 35(1): 70-77, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30525645

RESUMEN

Metal pretreatment is typically the first step in a reliable corrosion protection system. This work explores the incorporation of complexes between the cyclic oligosaccharide ß-cyclodextrin (ß-CD) and the molecular organic corrosion inhibitor 2-mercaptobenzothiazole (MBT) into an oxide-based pretreatment layer on metallic zinc. The layers were produced by a precorrosion step in the presence of ß-CD. The resulting films have a morphology dominated by spherical particles. X-ray photoelectron spectroscopy investigations of the surfaces show the sulfur atoms of MBT to be partially oxidized but mostly intact. Samples pretreated with such a layer were subsequently coated with a model polymer coating, and the delamination of this model coating from an artificial defect was monitored by a scanning Kelvin probe (SKP). The SKP results show a slow down of delamination after several hours of the ongoing corrosion process for surfaces pretreated with the complexes. Finally, an increase in the electrode potential in the defect was observed, with a subsequent complete stop in delamination and repassivation of the defect after ≈10 h. This repassivation is attributed to the release of MBT after the initiation of the corrosion process. Most likely, the increase of pH, combined with the availability of aqueous solution, facilitates the MBT release after the initiation of a corrosion process. Consequently, complexes formed from ß-CD and corrosion inhibitors can be effectively incorporated into inorganic pretreatments, and the inhibitor component can be released upon start of the corrosion process.

18.
Phys Chem Chem Phys ; 20(23): 16092-16101, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29855007

RESUMEN

Reduced tin dioxide/copper phthalocyanine (SnOx/CuPc) heterojunctions recently gained much attention in hybrid electronics due to their defect structure, allowing tuning of the electronic properties at the interface towards particular needs. In this work, we focus on the creation and analysis of the interface between the oxide and organic layer. The inorganic/organic heterojunction was created by depositing CuPc on SnOx layers prepared with the rheotaxial growth and vacuum oxidation (RGVO) method. Exploiting surface sensitive photoelectron spectroscopy techniques, angle dependent X-ray and UV photoelectron spectroscopy (ADXPS and UPS, respectively), supported by semi-empirical simulations, the role of carbon from adventitious organic adsorbates directly at the SnOx/CuPc interface was investigated. The adventitious organic adsorbates were blocking electronic interactions between the environment and surface, hence pinning energy levels. A significant interface dipole of 0.4 eV was detected, compensating for the difference in work functions of the materials in contact, however, without full alignment of the energy levels. From the ADXPS and UPS results, a detailed diagram of the interfacial electronic structure was constructed, giving insight into how to tailor SnOx/CuPc heterojunctions towards specific applications. On the one hand, parasitic surface contamination could be utilized in technology for passivation-like processes. On the other hand, if one needs to keep the oxide's surficial interactions fully accessible, like in the case of stacked electronic systems or gas sensor applications, carbon contamination must be carefully avoided at each processing step.

19.
J Chem Phys ; 148(22): 222824, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29907053

RESUMEN

The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO4 at pH ≈ 1-10. The germanium surface transformation to an H-terminated surface followed the thermodynamic Nernstian pH dependence and was observed throughout the entire pH range. A singular value decomposition-based spectra deconvolution technique coupled to a sigmoidal transition model for the potential dependence of the main components in the spectra shows the surface transformation to be a two-stage process. The first stage was observed together with the first appearance of Ge-H stretching modes in the spectra and is attributed to the formation of a mixed surface termination. This transition was reversible. The second stage occurs at potentials ≈0.1-0.3 V negative of the first one, shows a hysteresis in potential, and is attributed to the formation of a surface with maximum Ge-H coverage. During the surface transformation, the surface becomes hydrophobic, and an effective desolvation layer, a "hydrophobic gap," developed with a thickness ≈1-3 Å. The largest thickness was observed near neutral pH. Interfacial water IR spectra show a loss of strongly hydrogen-bound water molecules compared to bulk water after the surface transformation, and the appearance of "free," non-hydrogen bound OH groups, throughout the entire pH range. Near neutral pH at negative electrode potentials, large changes at wavenumbers below 1000 cm-1 were observed. Librational modes of water contribute to the observed changes, indicating large changes in the water structure.

20.
Beilstein J Nanotechnol ; 9: 936-944, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29600153

RESUMEN

Corrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide ß-cyclodextrin (ß-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of ß-CD is present on the surface of the oxide covered metal, with Raman spectra of the interface proving the adsorption of the intact ß-CD. Angular dependent X-ray photoelectron spectroscopy (ADXPS) and ultraviolet photoelectron spectroscopy (UPS) were used to extract a band-like diagram of the ß-CD/ZnO interface, showing a large energy level shift at the interface, closely resembling the energy level alignment in an n-p junction. The energy level shift is too large to permit further electron transfer through the layer, inhibiting corrosion. Adsorption hence changes the defect density in the protecting ZnO layer. This mechanism of corrosion inhibition shows that affecting the defect chemistry of passivating films by molecular inhibitors maybe a viable strategy to control corrosion of metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...