Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826443

RESUMEN

Mechanisms of X chromosome dosage compensation have been studied extensively in a few model species representing clades of shared sex chromosome ancestry. However, the diversity within each clade as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, for which a well-studied mechanism of dosage compensation occurs through a specialized structural maintenance of chromosomes (SMC) complex, and explore the diversity of dosage compensation in the surrounding phylogeny of nematodes. Through phylogenetic analysis of the C. elegans dosage compensation complex and a survey of its epigenetic signatures, including X-specific topologically associating domains (TADs) and X-enrichment of H4K20me1, we found that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis through an SMC-4 duplication. Intriguingly, an independent duplication of SMC-4 and the presence of X-specific TADs in Pristionchus pacificus suggest that condensin-mediated dosage compensation arose more than once. mRNA-seq analyses of gene expression in several nematode species indicate that dosage compensation itself is ancestral, as expected from the ancient XO sex determination system. Indicative of the ancestral mechanism, H4K20me1 is enriched on the X chromosomes in Oscheius tipulae, which does not contain X-specific TADs or SMC-4 paralogs. Together, our results indicate that the dosage compensation system in C. elegans is surprisingly new, and condensin may have been co-opted repeatedly in nematodes, suggesting that the process of evolving a chromosome-wide gene regulatory mechanism for dosage compensation is constrained. Significance statement: X chromosome dosage compensation mechanisms evolved in response to Y chromosome degeneration during sex chromosome evolution. However, establishment of dosage compensation is not an endpoint. As sex chromosomes change, dosage compensation strategies may have also changed. In this study, we performed phylogenetic and epigenomic analyses surrounding Caenorhabditis elegans and found that the condensin-mediated dosage compensation mechanism in C. elegans is surprisingly new, and has evolved in the presence of an ancestral mechanism. Intriguingly, condensin-based dosage compensation may have evolved more than once in the nematode lineage, the other time in Pristionchus. Together, our work highlights a previously unappreciated diversity of dosage compensation mechanisms within a clade, and suggests constraints in evolving new mechanisms in the presence of an existing one.

2.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38798598

RESUMEN

Regulation of transcription during embryogenesis is key to development and differentiation. To study transcript expression throughout Caenorhabditis elegans embryogenesis at single-molecule resolution, we developed a high-throughput single-molecule fluorescence in situ hybridization (smFISH) method that relies on computational methods to developmentally stage embryos and quantify individual mRNA molecules in single embryos. We applied our system to sdc-2, a zygotically transcribed gene essential for hermaphrodite development and dosage compensation. We found that sdc-2 is rapidly activated during early embryogenesis by increasing both the number of mRNAs produced per transcription site and the frequency of sites engaged in transcription. Knockdown of sdc-2 and dpy-27, a subunit of the dosage compensation complex (DCC), increased the number of active transcription sites for the X chromosomal gene dpy-23 but not the autosomal gene mdh-1, suggesting that the DCC reduces the frequency of dpy-23 transcription. The temporal resolution from in silico staging of embryos showed that the deletion of a single DCC recruitment element near the dpy-23 gene causes higher dpy-23 mRNA expression after the start of dosage compensation, which could not be resolved using mRNAseq from mixed-stage embryos. In summary, we have established a computational approach to quantify temporal regulation of transcription throughout C. elegans embryogenesis and demonstrated its potential to provide new insights into developmental gene regulation.

3.
bioRxiv ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-37786717

RESUMEN

In mammals, cohesin and CTCF organize the 3D genome into topologically associated domains (TADs) to regulate communication between cis-regulatory elements. However, many organisms, including S. cerevisiae, C. elegans, and A. thaliana lack CTCF. Here, we use C. elegans as a model to investigate the function of cohesin in 3D genome organization in an animal without CTCF. We use auxin-inducible degradation to acutely deplete SMC-3 or its negative regulator WAPL-1 from somatic cells. Using Hi-C data, we identify a cohesin-dependent 3D genome organization feature called chromatin jets (aka fountains). These are population average reflections of DNA loops that are ~20-40 kb in scale and often cover a few transcribed genes. The jets emerge from NIPBL occupied segments, and the trajectory of the jets coincides with cohesin binding. Cohesin translocation from jet origins depends on a fully intact complex and is extended upon WAPL-1 depletion. Hi-C results support the idea that cohesin is preferentially loaded at NIPBL occupied sites and loop extrudes in an effectively two-sided manner. The location of putative loading sites coincide with active enhancers and the strength of chromatin jet pattern correlates with transcription. Hi-C analyses upon WAPL-1 depletion reveal unequal loop extrusion processivity on each side and stalling due to cohesin molecules colliding. Compared to mammalian systems, average processivity of C. elegans cohesin is ~10-fold shorter and NIPBL binding does not depend on cohesin. We conclude that the processivity of cohesin scales with genome size; and regardless of CTCF presence, preferential loading of cohesin at enhancers is a conserved mechanism of genome organization that regulates the interaction of gene regulatory elements in 3D.

4.
Elife ; 112022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36331876

RESUMEN

Condensins are molecular motors that compact DNA via linear translocation. In Caenorhabditis elegans, the X-chromosome harbors a specialized condensin that participates in dosage compensation (DC). Condensin DC is recruited to and spreads from a small number of recruitment elements on the X-chromosome (rex) and is required for the formation of topologically associating domains (TADs). We take advantage of autosomes that are largely devoid of condensin DC and TADs to address how rex sites and condensin DC give rise to the formation of TADs. When an autosome and X-chromosome are physically fused, despite the spreading of condensin DC into the autosome, no TAD was created. Insertion of a strong rex on the X-chromosome results in the TAD boundary formation regardless of sequence orientation. When the same rex is inserted on an autosome, despite condensin DC recruitment, there was no spreading or features of a TAD. On the other hand, when a 'super rex' composed of six rex sites or three separate rex sites are inserted on an autosome, recruitment and spreading of condensin DC led to the formation of TADs. Therefore, recruitment to and spreading from rex sites are necessary and sufficient for recapitulating loop-anchored TADs observed on the X-chromosome. Together our data suggest a model in which rex sites are both loading sites and bidirectional barriers for condensin DC, a one-sided loop-extruder with movable inactive anchor.


Asunto(s)
Caenorhabditis elegans , Regulación de la Expresión Génica , Animales , Caenorhabditis elegans/genética , Compensación de Dosificación (Genética) , Cromosoma X/genética
5.
Mol Cell ; 82(22): 4202-4217.e5, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36302374

RESUMEN

Condensins are evolutionarily conserved molecular motors that translocate along DNA and form loops. To address how DNA topology affects condensin translocation, we applied auxin-inducible degradation of topoisomerases I and II and analyzed the binding and function of an interphase condensin that mediates X chromosome dosage compensation in C. elegans. TOP-2 depletion reduced long-range spreading of condensin-DC (dosage compensation) from its recruitment sites and shortened 3D DNA contacts measured by Hi-C. TOP-1 depletion did not affect long-range spreading but resulted in condensin-DC accumulation within expressed gene bodies. Both TOP-1 and TOP-2 depletion resulted in X chromosome derepression, indicating that condensin-DC translocation at both scales is required for its function. Together, the distinct effects of TOP-1 and TOP-2 suggest two distinct modes of condensin-DC association with chromatin: long-range DNA loop extrusion that requires decatenation/unknotting of DNA and short-range translocation across genes that requires resolution of transcription-induced supercoiling.


Asunto(s)
Adenosina Trifosfatasas , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Adenosina Trifosfatasas/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo , Cromosomas/metabolismo
6.
G3 (Bethesda) ; 12(8)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35731207

RESUMEN

Isolation of copy number variations and chromosomal duplications at high frequency in the laboratory suggested that Caenorhabditis elegans tolerates increased gene dosage. Here, we addressed if a general dosage compensation mechanism acts at the level of mRNA expression in C. elegans. We characterized gene dosage and mRNA expression in 3 chromosomal duplications and a fosmid integration strain using DNA-seq and mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same chromosomal duplication show variable levels of mRNA increase, suggesting feedback regulation of individual genes. Somatic dosage compensation and germline repression reduce the level of mRNA increase from X chromosomal duplications. Together, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Duplicación Cromosómica , Variaciones en el Número de Copia de ADN , Compensación de Dosificación (Genética) , Dosificación de Gen , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cromosoma X
7.
Genetics ; 220(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34739048

RESUMEN

The auxin-inducible degradation system in C. elegans allows for spatial and temporal control of protein degradation via heterologous expression of a single Arabidopsis thaliana F-box protein, transport inhibitor response 1 (AtTIR1). In this system, exogenous auxin (Indole-3-acetic acid; IAA) enhances the ability of AtTIR1 to function as a substrate recognition component that adapts engineered degron-tagged proteins to the endogenous C. elegans E3 ubiquitin ligases complex [SKR-1/2-CUL-1-F-box (SCF)], targeting them for degradation by the proteosome. While this system has been employed to dissect the developmental functions of many C. elegans proteins, we have found that several auxin-inducible degron (AID)-tagged proteins are constitutively degraded by AtTIR1 in the absence of auxin, leading to undesired loss-of-function phenotypes. In this manuscript, we adapt an orthogonal auxin derivative/mutant AtTIR1 pair [C. elegans AID version 2 (C.e.AIDv2)] that transforms the specificity of allosteric regulation of TIR1 from IAA to one that is dependent on an auxin derivative harboring a bulky aryl group (5-Ph-IAA). We find that a mutant AtTIR1(F79G) allele that alters the ligand-binding interface of TIR1 dramatically reduces ligand-independent degradation of multiple AID*-tagged proteins. In addition to solving the ectopic degradation problem for some AID-targets, the addition of 5-Ph-IAA to culture media of animals expressing AtTIR1(F79G) leads to more penetrant loss-of-function phenotypes for AID*-tagged proteins than those elicited by the AtTIR1-IAA pairing at similar auxin analog concentrations. The improved specificity and efficacy afforded by the mutant AtTIR1(F79G) allele expand the utility of the AID system and broaden the number of proteins that can be effectively targeted with it.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Caenorhabditis elegans , Proteínas F-Box , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo
8.
J Cell Sci ; 135(2)2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34918745

RESUMEN

Condensin is a multi-subunit structural maintenance of chromosomes (SMC) complex that binds to and compacts chromosomes. Here, we addressed the regulation of condensin binding dynamics using Caenorhabditis elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes DPY-27 binding to X chromosomes. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from ∼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C sequencing data from the dpy-21 null mutant showed little change compared to wild-type data, uncoupling Hi-C-measured long-range DNA contacts from transcriptional repression of the X chromosomes. Taken together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.


Asunto(s)
Proteínas de Caenorhabditis elegans , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN , Histona Demetilasas , Histonas/genética , Lisina , Complejos Multiproteicos , Cromosoma X/metabolismo
9.
BMC Genomics ; 22(1): 751, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34666684

RESUMEN

BACKGROUND: The transcription of developmental regulatory genes is often controlled by multiple cis-regulatory elements. The identification and functional characterization of distal regulatory elements remains challenging, even in tractable model organisms like sea urchins. RESULTS: We evaluate the use of chromatin accessibility, transcription and RNA Polymerase II for their ability to predict enhancer activity of genomic regions in sea urchin embryos. ATAC-seq, PRO-seq, and Pol II ChIP-seq from early and late blastula embryos are manually contrasted with experimental cis-regulatory analyses available in sea urchin embryos, with particular attention to common developmental regulatory elements known to have enhancer and silencer functions differentially deployed among embryonic territories. Using the three functional genomic data types, machine learning models are trained and tested to classify and quantitatively predict the enhancer activity of several hundred genomic regions previously validated with reporter constructs in vivo. CONCLUSIONS: Overall, chromatin accessibility and transcription have substantial power for predicting enhancer activity. For promoter-overlapping cis-regulatory elements in particular, the distribution of Pol II is the best predictor of enhancer activity in blastula embryos. Furthermore, ATAC- and PRO-seq predictive value is stage dependent for the promoter-overlapping subset. This suggests that the sequence of regulatory mechanisms leading to transcriptional activation have distinct relevance at different levels of the developmental gene regulatory hierarchy deployed during embryogenesis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Cromatina/genética , Regiones Promotoras Genéticas , Erizos de Mar/genética
10.
J Cell Biol ; 220(9)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34383014

RESUMEN

Animals evolved in environments with variable nutrient availability and one form of adaptation is the delay of reproduction in food shortage conditions. Belew et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202009197) report that in the nematode C. elegans, starvation-induced transcriptional quiescence in germ cells is achieved through a pathway that combines two well-known chromatin compaction mechanisms.


Asunto(s)
Caenorhabditis elegans , Cromatina , Animales , Caenorhabditis elegans/genética , Cromatina/genética , Cromosomas , Células Germinativas
11.
Curr Biol ; 31(4): 809-826.e6, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33357451

RESUMEN

Although precise tuning of gene expression levels is critical for most developmental pathways, the mechanisms by which the transcriptional output of dosage-sensitive molecules is established or modulated by the environment remain poorly understood. Here, we provide a mechanistic framework for how the conserved transcription factor BLMP-1/Blimp1 operates as a pioneer factor to decompact chromatin near its target loci during embryogenesis (hours prior to major transcriptional activation) and, by doing so, regulates both the duration and amplitude of subsequent target gene transcription during post-embryonic development. This priming mechanism is genetically separable from the mechanisms that establish the timing of transcriptional induction and functions to canalize aspects of cell-fate specification, animal size regulation, and molting. A key feature of the BLMP-1-dependent transcriptional priming mechanism is that chromatin decompaction is initially established during embryogenesis and maintained throughout larval development by nutrient sensing. This anticipatory mechanism integrates transcriptional output with environmental conditions and is essential for resuming normal temporal patterning after animals exit nutrient-mediated developmental arrests.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cromatina , Nutrientes , Factores de Transcripción/metabolismo
12.
Genetics ; 212(3): 729-742, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123040

RESUMEN

Condensins are evolutionarily conserved protein complexes that are required for chromosome segregation during cell division and genome organization during interphase. In Caenorhabditis elegans, a specialized condensin, which forms the core of the dosage compensation complex (DCC), binds to and represses X chromosome transcription. Here, we analyzed DCC localization and the effect of DCC depletion on histone modifications, transcription factor binding, and gene expression using chromatin immunoprecipitation sequencing and mRNA sequencing. Across the X, the DCC accumulates at accessible gene regulatory sites in active chromatin and not heterochromatin. The DCC is required for reducing the levels of activating histone modifications, including H3K4me3 and H3K27ac, but not repressive modification H3K9me3. In X-to-autosome fusion chromosomes, DCC spreading into the autosomal sequences locally reduces gene expression, thus establishing a direct link between DCC binding and repression. Together, our results indicate that DCC-mediated transcription repression is associated with a reduction in the activity of X chromosomal gene regulatory elements.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Código de Histonas , Complejos Multiproteicos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Cromosoma X/genética , Adenosina Trifosfatasas/genética , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Histonas/genética , Histonas/metabolismo , Complejos Multiproteicos/genética , Factores de Transcripción/metabolismo , Cromosoma X/metabolismo
13.
Curr Genet ; 65(2): 407-415, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30361853

RESUMEN

Condensin is a multi-subunit protein complex that belongs to the family of structural maintenance of chromosomes (SMC) complexes. Condensins regulate chromosome structure in a wide range of processes including chromosome segregation, gene regulation, DNA repair and recombination. Recent research defined the structural features and molecular activities of condensins, but it is unclear how these activities are connected to the multitude of phenotypes and functions attributed to condensins. In this review, we briefly discuss the different molecular mechanisms by which condensins may regulate global chromosome compaction, organization of topologically associated domains, clustering of specific loci such as tRNA genes, rDNA segregation, and gene regulation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Animales , División Celular/genética , Ensamble y Desensamble de Cromatina , ADN Ribosómico/genética , Regulación de la Expresión Génica , Sitios Genéticos , Genoma , Humanos , Interfase/genética , ARN de Transferencia , Transcripción Genética
14.
Genetics ; 210(1): 331-344, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29970489

RESUMEN

Condensins are broadly conserved chromosome organizers that function in chromatin compaction and transcriptional regulation, but to what extent these two functions are linked has remained unclear. Here, we analyzed the effect of condensin inactivation on genome compaction and global gene expression in the yeast Saccharomyces cerevisiae by performing spike-in-controlled genome-wide chromosome conformation capture (3C-seq) and mRNA-sequencing analysis. 3C-seq analysis shows that acute condensin inactivation leads to a global decrease in close-range intrachromosomal interactions as well as more specific losses of interchromosomal tRNA gene clustering. In addition, a condensin-rich interaction domain between the ribosomal DNA and the centromere on chromosome XII is lost upon condensin inactivation. Unexpectedly, these large-scale changes in chromosome architecture are not associated with global changes in mRNA levels. Our data suggest that the global transcriptional program of proliferating S. cerevisiae is resistant to condensin inactivation and the associated profound changes in genome organization.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Adenosina Trifosfatasas/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genoma/genética , Mitosis/genética , Complejos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcriptoma/genética
15.
Trends Genet ; 34(1): 41-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29037439

RESUMEN

Recent work demonstrating the role of chromosome organization in transcriptional regulation has sparked substantial interest in the molecular mechanisms that control chromosome structure. Condensin, an evolutionarily conserved multisubunit protein complex, is essential for chromosome condensation during cell division and functions in regulating gene expression during interphase. In Caenorhabditis elegans, a specialized condensin forms the core of the dosage compensation complex (DCC), which specifically binds to and represses transcription from the hermaphrodite X chromosomes. DCC serves as a clear paradigm for addressing how condensins target large chromosomal domains and how they function to regulate chromosome structure and transcription. Here, we discuss recent research on C. elegans DCC in the context of canonical condensin mechanisms as have been studied in various organisms.


Asunto(s)
Adenosina Trifosfatasas/genética , Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Compensación de Dosificación (Genética) , Complejos Multiproteicos/genética , Animales , Femenino , Regulación de la Expresión Génica , Cromosoma X
16.
Elife ; 62017 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-28562241

RESUMEN

In many organisms, it remains unclear how X chromosomes are specified for dosage compensation, since DNA sequence motifs shown to be important for dosage compensation complex (DCC) recruitment are themselves not X-specific. Here, we addressed this problem in C. elegans. We found that the DCC recruiter, SDC-2, is required to maintain open chromatin at a small number of primary DCC recruitment sites, whose sequence and genomic context are X-specific. Along the X, primary recruitment sites are interspersed with secondary sites, whose function is X-dependent. A secondary site can ectopically recruit the DCC when additional recruitment sites are inserted either in tandem or at a distance (>30 kb). Deletion of a recruitment site on the X results in reduced DCC binding across several megabases surrounded by topologically associating domain (TAD) boundaries. Our work elucidates that hierarchy and long-distance cooperativity between gene-regulatory elements target a single chromosome for regulation.


Asunto(s)
Caenorhabditis elegans/genética , Compensación de Dosificación (Genética) , Cromosoma X/metabolismo , Animales , Cromatina/metabolismo , Sindecano-2/metabolismo
17.
Genetics ; 204(1): 355-69, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27356611

RESUMEN

Dosage compensation mechanisms equalize the level of X chromosome expression between sexes. Yet the X chromosome is often enriched for genes exhibiting sex-biased, i.e., imbalanced expression. The relationship between X chromosome dosage compensation and sex-biased gene expression remains largely unexplored. Most studies determine sex-biased gene expression without distinguishing between contributions from X chromosome copy number (dose) and the animal's sex. Here, we uncoupled X chromosome dose from sex-specific gene regulation in Caenorhabditis elegans to determine the effect of each on X expression. In early embryogenesis, when dosage compensation is not yet fully active, X chromosome dose drives the hermaphrodite-biased expression of many X-linked genes, including several genes that were shown to be responsible for hermaphrodite fate. A similar effect is seen in the C. elegans germline, where X chromosome dose contributes to higher hermaphrodite X expression, suggesting that lack of dosage compensation in the germline may have a role in supporting higher expression of X chromosomal genes with female-biased functions in the gonad. In the soma, dosage compensation effectively balances X expression between the sexes. As a result, somatic sex-biased expression is almost entirely due to sex-specific gene regulation. These results suggest that lack of dosage compensation in different tissues and developmental stages allow X chromosome copy number to contribute to sex-biased gene expression and function.


Asunto(s)
Caenorhabditis elegans/genética , Compensación de Dosificación (Genética) , Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Animales , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Femenino , Masculino , Factores Sexuales , Cromosoma X
19.
PLoS Genet ; 11(12): e1005698, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26641248

RESUMEN

In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes slightly to X-repression. Thus H4K20me1 is not only a downstream effector of the DCC [corrected].In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Compensación de Dosificación (Genética) , Desarrollo Embrionario , N-Metiltransferasa de Histona-Lisina/genética , Proteínas Nucleares/genética , Animales , Caenorhabditis elegans , Cromatina/genética , Femenino , Masculino , Mutación , Cromosoma X/genética
20.
J Genomics ; 3: 1-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25628761

RESUMEN

In many animals, males have one X and females have two X chromosomes. The difference in X chromosome dosage between the two sexes is compensated by mechanisms that regulate X chromosome transcription. Recent advances in genomic techniques have provided new insights into the molecular mechanisms of X chromosome dosage compensation. In this review, I summarize our current understanding of dosage imbalance in general, and then review the molecular mechanisms of X chromosome dosage compensation with an emphasis on the parallels and differences between the three well-studied model systems, M. musculus, D. melanogaster and C. elegans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...