Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS One ; 11(1): e0145100, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26731692

RESUMEN

INTRODUCTION: Bio-repositories are invaluable resources to implement translational cancer research and clinical programs. They represent one of the most powerful tools for biomolecular studies of clinically annotated cohorts, but high quality samples are required to generate reliable molecular readouts and functional studies. The objective of our study was to define the impact of cancer tissue ischemia time on RNA and DNA quality, and for the generation of Patient-Derived Xenografts (PDXs). METHODS: One-hundred thirty-five lung cancer specimens were selected among our Institutional BioBank samples. Associations between different warm (surgical) and cold (ex-vivo) ischemia time ranges and RNA quality or PDXs engraftment rates were assessed. RNA quality was determined by RNA integrity number (RINs) values. Fresh viable tissue fragments were implanted subcutaneously in NSG mice and serially transplanted. RESULTS: RNAs with a RIN>7 were detected in 51% of the sample (70/135), with values of RIN significantly lower (OR 0.08, P = 0.01) in samples preserved for more than 3 hours before cryopreservation. Higher quality DNA samples had a concomitant high RIN. Sixty-three primary tumors (41 adenocarcinoma) were implanted with an overall engraftment rate of 33%. Both prolonged warm (>2 hours) and ex-vivo ischemia time (>10 hours) were associated to a lower engraftment rate (OR 0.09 P = 0.01 and OR 0.04 P = 0.008, respectively). CONCLUSION: RNA quality and PDXs engraftment rate were adversely affected by prolonged ischemia times. Proper tissue collection and processing reduce failure rate. Overall, NSCLC BioBanking represents an innovative modality, which can be successfully executed in routine clinical settings, when stringent Standard Operating Procedures are adopted.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , ARN Neoplásico/genética , Bancos de Tejidos , Anciano , Animales , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Carcinoma de Pulmón de Células no Pequeñas/patología , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Femenino , Supervivencia de Injerto , Humanos , Subunidad gamma Común de Receptores de Interleucina/deficiencia , Subunidad gamma Común de Receptores de Interleucina/genética , Isquemia , Neoplasias Pulmonares/irrigación sanguínea , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa Multiplex , Estabilidad del ARN , ARN Neoplásico/metabolismo , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Trasplante Heterólogo
2.
Cancer Cell ; 27(4): 516-32, 2015 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-25873174

RESUMEN

A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Linfoma Anaplásico de Células Grandes/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Janus Quinasa 1/genética , Ratones , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , FN-kappa B/genética , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Tirosina Quinasas Receptoras/genética , Factor de Transcripción STAT3/genética , Transducción de Señal , TYK2 Quinasa/genética
3.
PLoS One ; 8(5): e63748, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717474

RESUMEN

BACKGROUND: Medulloblastoma (MB) is an aggressive pediatric tumor of the Central Nervous System (CNS) usually treated according to a refined risk stratification. The study of cancer stem cells (CSC) in MB is a promising approach aimed at finding new treatment strategies. METHODOLOGY/PRINCIPAL FINDINGS: The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76) grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS) were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and ß-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM). In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. CONCLUSIONS/SIGNIFICANCE: Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.


Asunto(s)
Meduloblastoma/metabolismo , Células Madre Neoplásicas/metabolismo , Proteómica , Biomarcadores , Línea Celular Tumoral , Movimiento Celular , Humanos , Inmunofenotipificación , Meduloblastoma/patología , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/ultraestructura , Fenotipo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteoma , Proteómica/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Esferoides Celulares , Células Tumorales Cultivadas
4.
Am J Pathol ; 182(6): 2058-70, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23623609

RESUMEN

In an attempt to reveal deregulated miRNAs associated with the progression of carcinomas developed in BALB-neuT transgenic mice, we found increased expression of miR-135b during malignancy. Relevantly, we observed that miR-135b is up-regulated in basal or normal-like human breast cancers, and it correlates with patient survival and early metastatization. Therefore, we investigated its biological functions by modulating its expression (up- or down-regulation) in mammary tumor cells. Although no effect was observed on proliferation in cell culture and in orthotopically injected mice, miR-135b was able to control cancer cell stemness in a mammosphere assay, anchorage-independent growth in vitro, and lung cancer cell dissemination in mice after tail vein injections. Focusing on the miR-135b molecular mechanism, we observed that miR-135b controls malignancy via its direct targets, midline 1 (MID1) and mitochondrial carrier homolog 2 (MTCH2), as proved by biochemical and functional rescuing/phenocopying experiments. Consistently, an anti-correlation between miR-135b and MID1 or MTCH2 was found in human primary tumor samples. In conclusion, our research led us to the identification of miR-135b and its targets, MID1 and MTCH2, as relevant coordinators of mammary gland tumor progression.


Asunto(s)
Neoplasias Mamarias Experimentales/metabolismo , MicroARNs/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/fisiología , Genes erbB-2 , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , MicroARNs/biosíntesis , MicroARNs/genética , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , ARN Neoplásico/genética , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas , Regulación hacia Arriba/fisiología
5.
Environ Health ; 11: 59, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22947094

RESUMEN

BACKGROUND: Formaldehyde (HCHO) is a gas (available as a 37% concentrated solution, stabilized with methanol). The 10% dilution (approximately 4% formaldehyde) has been used as a fixative since the end of the 19th century. Alternative fixatives are also commercially available or may be prepared in-house in laboratories. Statements by the IARC, along with other USA agencies (CalEPA, RoC/NTP) on the carcinogenicity of formaldehyde for humans renders its substitution in Pathology Departments necessary since the annual use of formalin may exceed 3,500 liters for a medium-large laboratory. To achieve a "formalin-free laboratory" we tested straightforward-to-make fixatives along with registered reagents offered as formalin substitutes. METHODS: More than two hundreds specimens were fixed in parallel with in-laboratory made fixatives PAGA (Polyethylenglycol, ethyl Alcohol, Glycerol, Acetic acid), two zinc-based fixatives (ZBF, Z7), and commercially-available alternatives (RCL2 and CellBlock). Tissue micro arrays were used for morphological and immunohistochemical comparison. Extraction of RNA was carried out to evaluate preservation of nucleic acids. RESULTS: Differences compared to formalin fixation were evident in alcohol-based fixatives, mainly restricted to higher stain affinity and considerable tissue shrinkage. Conversely, nuclear detail was superior with these alcohol-based formulas compared to formalin or glyoxale-based recipes. RNA extraction was superior for Z7, PAGA and RCL2 with regard to concentration but relatively comparable regarding quality. CONCLUSIONS: Abolition of the human carcinogen formaldehyde from pathology laboratories is possible even in contexts whereby commercial alternatives to formalin are unavailable or are too expensive for routine use, and aspiration devices are lacking or not adequately serviced. The use of known formulations, possibly with simple and not-noxious ("alimentary grade") constituents, comparable with registered proprietary products, may expand the search for the ideal fixative combining satisfactory morphology with improved preservation of nucleic acids and proteins as well as being easy and safe to dispose of.


Asunto(s)
Fijadores , Fijación del Tejido/métodos , Contaminantes Atmosféricos , Contaminación del Aire/prevención & control , Carcinógenos , Formaldehído , Laboratorios
6.
Cancers (Basel) ; 3(3): 3225-41, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-24212954

RESUMEN

DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2+ carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...