Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cogn Neurodyn ; 17(5): 1309-1320, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37786655

RESUMEN

During the caudo-rostral progression of Lewy pathology, the amygdala is involved relatively early in Parkinson's disease (PD). However, lesser is known about the volumetric differences at the amygdala subdivisions, although the evidence mainly implicates the olfactory amygdala. We aimed to investigate the volumetric differences between the amygdala's nuclear and sectoral subdivisions in the PD cognitive impairment continuum compared to healthy controls (HC). The volumes of nine nuclei of the amygdala were estimated with FreeSurfer (nuclear parcellation-NP) from T1-weighted images of PD patients with normal cognition (PD-CN), PD with mild cognitive impairment (PD-MCI), PD with dementia (PD-D), and HC. The appropriate nuclei were then merged to obtain three sectors of the amygdala (sectoral parcellation-SP). The nuclear and sectoral volumes were compared among the four groups and between the hyposmic and normosmic PD patients. There was a significant difference in the total amygdala volume among the four groups. In terms of nuclei, the bilateral cortico-amygdaloid transition area (CAT) and sectors superficial cortex-like region (sCLR) volumes of PD-MCI and PD-D were less than those of the PD-CN and HC. A linear discriminant analysis revealed that left CAT and left sCLR volumes classified the PD-CN and cognitively impaired PD (PD-CI: PD-MCI plus PD-D) with 90.7% accuracy according to NP and 85.2% accuracy to SP. Similarly, left CAT and sCLR volumes correctly identified the hyposmic and normosmic PD with 64.8% and 61.1% accuracies. Notably, the left olfactory amygdala volume successfully discriminated cognitive impairment in PD and could be used as neuroimaging-based support for PD-CI diagnosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s11571-022-09887-y.

3.
MAGMA ; 35(6): 997-1008, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35867235

RESUMEN

OBJECTIVE: To investigate metabolic changes of mild cognitive impairment in Parkinson's disease (PD-MCI) using proton magnetic resonance spectroscopic imaging (1H-MRSI). METHODS: Sixteen healthy controls (HC), 26 cognitively normal Parkinson's disease (PD-CN) patients, and 34 PD-MCI patients were scanned in this prospective study. Neuropsychological tests were performed, and three-dimensional 1H-MRSI was obtained at 3 T. Metabolic parameters and neuropsychological test scores were compared between PD-MCI, PD-CN, and HC. The correlations between neuropsychological test scores and metabolic intensities were also assessed. Supervised machine learning algorithms were applied to classify HC, PD-CN, and PD-MCI groups based on metabolite levels. RESULTS: PD-MCI had a lower corrected total N-acetylaspartate over total creatine ratio (tNAA/tCr) in the right precentral gyrus, corresponding to the sensorimotor network (p = 0.01), and a lower tNAA over myoinositol ratio (tNAA/mI) at a part of the default mode network, corresponding to the retrosplenial cortex (p = 0.04) than PD-CN. The HC and PD-MCI patients were classified with an accuracy of 86.4% (sensitivity = 72.7% and specificity = 81.8%) using bagged trees. CONCLUSION: 1H-MRSI revealed metabolic changes in the default mode, ventral attention/salience, and sensorimotor networks of PD-MCI patients, which could be summarized mainly as 'posterior cortical metabolic changes' related with cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Estudios Prospectivos , Creatina , Protones , Disfunción Cognitiva/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Aprendizaje Automático , Espectroscopía de Resonancia Magnética , Inositol , Receptores de Antígenos de Linfocitos T
4.
Eur J Radiol ; 144: 109985, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34619619

RESUMEN

Mild cognitive impairment of Parkinson's disease (PD) may be an early manifestation that may progressively worsen to dementia. Cognitive decline has been associated with changes in the brain perfusion pattern. This study aimed to evaluate cerebral blood flow (CBF) deficits specific to different stages of cognitive decline. Seventeen patients with cognitively normal PD (PD-CN), 18 patients with PD with mild cognitive impairment (PD-MCI), and 16 patients with PD with dementia (PDD) were included in this study. The participants were scanned using a 3 T Philips MRI scanner. Arterial spin labelling magnetic resonance (ASL-MR) images were acquired, followed by calculation of the CBF maps, and registration onto the MNI152 brain atlas. A whole-brain voxel-based CBF comparison was performed among the patient groups using age as a covariate. The mean age of patients with PDD was significantly higher than that of patients with PD-MCI (P = 0.015) and PD-CN (P = 0.001). The CBF values of the three groups were significantly different in the left cuneus of the visual network (VN), left inferior frontal gyrus of the frontoparietal network (FPN), and left dorsomedial nucleus of the thalamus. PDD had lower perfusion values than PD-MCI group in the same regions detected in the main group analysis. Additionally, comparison of PDD with PD-CN and non-demented groups revealed that the perfusion reduction extended into the bilateral cuneus of the VN, bilateral thalami, and left inferior frontal gyrus of the FPN. PDD could be separated from PD-MCI and PD-CN stages with CBF deficits in non-dopaminergically mediated posterior and dopaminergically mediated frontal networks.


Asunto(s)
Disfunción Cognitiva , Demencia , Enfermedad de Parkinson , Encéfalo , Demencia/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Perfusión
5.
J Neural Transm (Vienna) ; 127(9): 1285-1294, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32632889

RESUMEN

Parkinson's disease (PD) with mild cognitive impairment (PD-MCI) is currently diagnosed based on an arbitrarily predefined standard deviation of neuropsychological test scores, and more objective biomarkers for PD-MCI diagnosis are needed. The purpose of this study was to define possible brain perfusion-based biomarkers of not only mild cognitive impairment, but also risky gene carriers in PD using arterial spin labeling magnetic resonance imaging (ASL-MRI). Fifteen healthy controls (HC), 26 cognitively normal PD (PD-CN), and 27 PD-MCI subjects participated in this study. ASL-MRI data were acquired by signal targeting with alternating radio-frequency labeling with Look-Locker sequence at 3 T. Single nucleotide polymorphism genotyping for rs9468 [microtubule-associated protein tau (MAPT) H1/H1 versus H1/H2 haplotype] was performed using a Stratagene Mx3005p real-time polymerase chain-reaction system (Agilent Technologies, USA). There were 15 subjects with MAPT H1/H1 and 11 subjects with MAPT H1/H2 within PD-MCI, and 33 subjects with MAPT H1/H1 and 19 subjects with MAPT H1/H2 within all PD. Voxel-wise differences of cerebral blood flow (CBF) values between HC, PD-CN and PD-MCI were assessed by one-way analysis of variance followed by pairwise post hoc comparisons. Further, the subgroup of PD patients carrying the risky MAPT H1/H1 haplotype was compared with noncarriers (MAPT H1/H2 haplotype) in terms of CBF by a two-sample t test. A pattern that could be summarized as "posterior hypoperfusion" (PH) differentiated the PD-MCI group from the HC group with an accuracy of 92.6% (sensitivity = 93%, specificity = 93%). Additionally, the PD patients with MAPT H1/H1 haplotype had decreased perfusion than the ones with H1/H2 haplotype at the posterior areas of the visual network (VN), default mode network (DMN), and dorsal attention network (DAN). The PH-type pattern in ASL-MRI could be employed as a biomarker of both current cognitive impairment and future cognitive decline in PD.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Circulación Cerebrovascular , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/genética , Haplotipos , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética
6.
Noro Psikiyatr Ars ; 57(1): 15-17, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32110144

RESUMEN

INTRODUCTION: Cognitive impairment is common in Parkinson's disease (PD) and PD patients with mild cognitive impairment (PD-MCI) are at increased risk of developing Parkinson's disease dementia (PDD). Reliable biomarkers are required for objective identification of cognitive decline in PD. In this pilot study, serum levels of well-known mediators of neuroinflammation were measured in PD patients with or without MCI to find out the involvement of neuroinflammation and microglial activation in PD-MCI. METHODS: 36 PD-MCI, 25 PD patients with normal cognition (PD-NC) and 19 healthy controls were recruited. Serum levels of NLR family pyrin domain containing 1 (NLRP1), NLRP3, caspase-1, NF-kB, IL-1b and IL-18 were measured by ELISA and a panel of neuropsychological tests was administered. RESULTS: PD-MCI patients showed significantly reduced levels of NF-kB, IL-1b and IL-18, whereas NLRP1, NLRP3 and caspase-1 levels were comparable among PD-NC and PD-MCI patients. IL-18 levels were positively correlated with Addenbrooke's Cognitive Examination-Revised and Symbol Digit Modalities Test scores. CONCLUSION: Levels of several microglial activation mediators are reduced in PD-MCI patients inferring a protective role to certain inflammation factors against cognitive decline in PD.

7.
Cogn Neurodyn ; 13(6): 503-512, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31741687

RESUMEN

Event-related potentials (ERPs) and oscillations (EROs) are reliable measures of cognition, but they require time-locked electroencephalographic (EEG) data to repetitive triggers that are not available in continuous sensory input streams. However, such real-life-like stimulation by videos or virtual-reality environments may serve as powerful means of creating specific cognitive or affective states and help to investigate dysfunctions in psychiatric and neurological disorders more efficiently. This study aims to develop a method to generate ERPs and EROs during watching videos. Repeated luminance changes were introduced on short video segments, while EEGs of 10 subjects were recorded. The ERP/EROs time-locked to these distortions were analyzed in time and time-frequency domains and tested for their cognitive significance through a long term memory test that included frames from the watched videos. For each subject, ERPs and EROs corresponding to video segments of recalled images with 25% shortest and 25% longest reaction times were compared. ERPs produced by transient luminance changes displayed statistically significant fluctuations both in time and time-frequency domains. Statistical analyses showed that a positivity around 450 ms, a negativity around 500 ms and delta and theta EROs correlated with memory performance. Few studies mixed video streams with simultaneous ERP/ERO experiments with discrete task-relevant or passively presented auditory or somatosensory stimuli, while the present study, by obtaining ERPs and EROs to task-irrelevant events in the same sensory modality as that of the continuous sensory input, produces minimal interference with the main focus of attention on the video stream.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...