Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 45(9): 7352-7373, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37754249

RESUMEN

Understanding the relative contributions of different repair pathways to radiation-induced DNA damage responses remains a challenging issue in terms of studying the radiation injury endpoints. The comparative manifestation of homologous recombination (HR) after irradiation with different doses greatly determines the overall effectiveness of recovery in a dividing cell after irradiation, since HR is an error-free mechanism intended to perform the repair of DNA double-strand breaks (DSB) during S/G2 phases of the cell cycle. In this article, we present experimentally observed evidence of dose-dependent shifts in the relative contributions of HR in human fibroblasts after X-ray exposure at doses in the range 20-1000 mGy, which is also supported by quantitative modeling of DNA DSB repair. Our findings indicate that the increase in the radiation dose leads to a dose-dependent decrease in the relative contribution of HR in the entire repair process.

2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269850

RESUMEN

The aim of this study was to verify the applicability of high-concentration collagen-based bioink with MSC (ADSC) and decellularized ECM granules for the formation of cartilage tissue de novo after subcutaneous implantation of the scaffolds in rats. The printability of the bioink (4% collagen, 2.5% decellularized ECM granules, derived via 280 µm sieve) was shown. Three collagen-based compositions were studied: (1) with ECM; (2) with MSC; (3) with ECM and MSC. It has been established that decellularized ECM granules are able to stimulate chondrogenesis both in cell-free and MSC-laden scaffolds. Undesirable effects have been identified: bone formation as well as cartilage formation outside of the scaffold area. The key perspectives and limitations of ECM granules (powder) application have been discussed.


Asunto(s)
Bioimpresión , Condrogénesis , Animales , Cartílago , Colágeno , Matriz Extracelular Descelularizada , Matriz Extracelular , Impresión Tridimensional , Ratas , Ingeniería de Tejidos , Andamios del Tejido
3.
J Funct Biomater ; 12(4)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34698183

RESUMEN

The creation of artificial biocomposites consisting of biocompatible materials in combination with bioactive molecules is one of the main tasks of tissue engineering. The development of new materials, which are biocompatible, functional, and also biodegradable in vivo, is a specific problem. Two types of products can be formed from these materials in the processes of biodegradation. The first types of substances are natural for a living organism and are included in the metabolism of cells, for example, sugars, lactic, glycolic, and ß-hydroxybutyric acids. Substances that are not metabolized by cells represent the other type. In the latter case, such products should not be toxic, and their concentration when entering the bloodstream should not exceed the established maximum permissible level. The composite materials based on a mixture of biodegradable synthetic and natural polymers with the addition of hydroxyapatite nanoparticles, which acts as a stabilizer of the dispersed system during production of the composite, and which is a biologically active component of the resulting matrix, were obtained and studied. The indirect effect of the shape, size, and surface charge of hydroxyapatite nanoparticles on the structure and porosity of the formed matrix was shown. An in vivo study showed the absence of acute toxicity of the developed composites.

4.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673439

RESUMEN

Ionizing radiation (IR) is used for patients diagnosed with unresectable non-small cell lung cancer (NSCLC). However, radiotherapy remains largely palliative due to the survival of specific cell subpopulations. In the present study, the sublines of NSCLC cells, A549IR (p53wt) and H1299IR (p53null) survived multifraction X-ray radiation exposure (MFR) at a total dose of 60 Gy were investigated three weeks after the MFR course. We compared radiosensitivity (colony formation), expression of epithelial-mesenchymal transition (EMT) markers, migration activity, autophagy, and HR-dependent DNA double-strand break (DSB) repair in the bulk and entire CD44high/CD166high CSC-like populations of both parental and MFR survived NSCLC cells. We demonstrated that the p53 status affected: the pattern of expression of N-cadherin, E-cadherin, Vimentin, witnessing the appearance of EMT-like phenotype of MFR-surviving sublines; 1D confined migratory behavior (wound healing); the capability of an irradiated cell to continue to divide and form a colony of NSCLC cells before and after MFR; influencing the CD44/CD166 expression level in MFR-surviving NSCLC cells after additional single irradiation. Our data further emphasize the impact of p53 status on the decay of γH2AX foci and the associated efficacy of the DSB repair in NSCLC cells survived after MFR. We revealed that Rad51 protein might play a principal role in MFR-surviving of p53 null NSCLC cells promoting DNA DSB repair by homologous recombination (HR) pathway. The proportion of Rad51 + cells elevated in CD44high/CD166high population in MFR-surviving p53wt and p53null sublines and their parental cells. The p53wt ensures DNA-PK-mediated DSB repair for both parental and MFR-surviving cells irrespectively of a subsequent additional single irradiation. Whereas in the absence of p53, a dose-dependent increase of DNA-PK-mediated non-homologous end joining (NHEJ) occurred as an early post-irradiation response is more intensive in the CSC-like population MFR-surviving H1299IR, compared to their parental H1299 cells. Our study strictly observed a significantly higher content of LC3 + cells in the CD44high/CD166high populations of p53wt MFR-surviving cells, which enriched the CSC-like cells in contrast to their p53null counterparts. The additional 2 Gy and 5 Gy X-ray exposure leads to the dose-dependent increase in the proportion of LC3 + cells in CD44high/CD166high population of both parental p53wt and p53null, but not MFR-surviving NSCLC sublines. Our data indicated that autophagy is not necessarily associated with CSC-like cells' radiosensitivity, emphasizing that careful assessment of other milestone processes (such as senescence and autophagy-p53-Zeb1 axis) of primary radiation responses may provide new potential targets modulated for therapeutic benefit through radiosensitizing cancer cells while rescuing normal tissue. Our findings also shed light on the intricate crosstalk between autophagy and the p53-related EMT, by which MFR-surviving cells might obtain an invasive phenotype and metastatic potential.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Roturas del ADN de Doble Cadena , Neoplasias Pulmonares/radioterapia , Tolerancia a Radiación , Reparación del ADN por Recombinación , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Autofagia , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Línea Celular Tumoral , Movimiento Celular , ADN/metabolismo , Reparación del ADN por Unión de Extremidades , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/fisiopatología , Recombinasa Rad51/metabolismo , Rayos X
5.
Eur J Transl Myol ; 31(1)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33709648

RESUMEN

The development of new biomaterials whose characteristics are as close as possible to the properties of living human tissues is one of the most promising areas of regenerative medicine. This work aimed at creating a bioplastic material based on collagen, elastin and hyaluronic acid and studying its structure and properties to assess the prospects for further use in clinical practice. Bioplastic material was obtained by mixing collagen, hyaluronic acid and elastin in predetermined proportions with distilled water. We treated the material with photochemical crosslinking to stabilize biofilm in a liquid medium and form a nanostructured scaffold. A commercial human skin fibroblast cell culture was used to assess the biomaterial cytotoxicity and biocompatibility. The visualization and studies of the biomaterial structure were performed using light and scanning electron microscopy. It has been shown that the obtained biomaterial is characterized by high resilience; it has also a high porosity. The co-culturing of the bioplastic material and human fibroblasts did not reveal any of its cytotoxic effects on cells in culture. It was shown that the biomaterial samples could maintain physical properties in the culture medium for more than 10 days, while the destruction of the matrix was observed 3-4 weeks after the beginning of incubation. Thus, the created biomaterial can be used on damaged skin areas due to its physical properties and structure. The use of the developed biomaterial provides effective conditions for good cell proliferation, which allows us to consider it as a promising wound cover for use in clinical practice.

6.
Eur J Transl Myol ; 30(3): 9165, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33117508

RESUMEN

On February 11, 2020, the World Health Organization officially named the infection caused by the new coronavirus "Coronavirus disease 2019" (COVID-19). On February 11, 2020, the International Committee on Taxonomy of Viruses (ICTV) officially named the infectious matter "severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2). Emergence of severe complications with new coronavirus disease is due to the development of hypercytokinaemia, also known as "cytokine storm". These complications comprise acute respiratory distress syndrome (ARDS), respiratory failure and death. Emerging data point to the logic of using extracorporeal haemocorrection to normalise cytokine levels and reduce the severity of organ disorders. The analysis of the literature indicates that to date, a certain positive experience has been accumulated in the world in the application of extracorporeal methods in clinical practice in patients with COVID-19.

7.
Oncotarget ; 8(38): 64317-64329, 2017 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-28969073

RESUMEN

At high exposure levels ionizing radiation is a carcinogen. Little is known about how human stem cells, which are known to contribute to tumorigenesis, respond to prolonged radiation exposures. We studied formation of DNA double strand breaks, accessed as γH2AX and 53BP1 foci, in human mesenchymal stem cells (MSCs) exposed to either acute (5400 mGy/h) or prolonged (270 mGy/h) X-irradiation. We show a linear γH2AX and 53BP1 dose response for acute exposures. In contrast, prolonged exposure resulted in a dose-response curve that had an initial linear portion followed by a plateau. Analysis of Rad51 foci, as a marker of homologous recombination, in cells exposed to prolonged irradiation revealed a threshold in a dose response. Using Ki67 as a marker of proliferating cells, we show no difference in the γH2AX distribution in proliferating vs. quiescent cells. However, Rad51 foci were found almost exclusively in proliferating cells. Concurrent increases in the fraction of S/G2 cells were detected in cells exposed to prolonged irradiation by scoring CENPF-positive cells. Our data suggest that prolonged exposure of MSCs to ionizing radiation leads to cell cycle redistribution and associated activation of homologous recombination. Also, proliferation status may significantly affect the biological outcome, since homologous repair is not activated in resting MSCs.

8.
Oncotarget ; 6(29): 26876-85, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26337087

RESUMEN

Molecular and cellular responses to protracted ionizing radiation exposures are poorly understood. Using immunofluorescence microscopy, we studied the kinetics of DNA repair foci formation in normal human fibroblasts exposed to X-rays at a dose rate of 4.5 mGy/min for up to 6 h. We showed that both the number of γH2AX foci and their integral fluorescence intensity grew linearly with time of irradiation up to 2 h. A plateau was observed between 2 and 6 h of exposure, indicating a state of balance between formation and repair of DNA double-strand breaks. In contrast, the number and intensity of foci formed by homologous recombination protein RAD51 demonstrated a continuous increase during 6 h of irradiation. We further showed that the enhancement of the homologous recombination repair was not due to redistribution of cell cycle phases. Our results indicate that continuous irradiation of normal human cells triggers DNA repair responses that are different from those elicited after acute irradiation. The observed activation of the error-free homologous recombination DNA double-strand break repair pathway suggests compensatory adaptive mechanisms that may help alleviate long-term biological consequences and could potentially be utilized both in radiation protection and medical practices.


Asunto(s)
Reparación del ADN , Fibroblastos/efectos de la radiación , Recombinación Homóloga , Piel/efectos de la radiación , Biopsia , ADN/química , Roturas del ADN de Doble Cadena , Relación Dosis-Respuesta en la Radiación , Fibroblastos/metabolismo , Fibroblastos/patología , Voluntarios Sanos , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Piel/metabolismo , Piel/patología , Rayos X
9.
Oncotarget ; 6(29): 27275-87, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26314960

RESUMEN

Diagnostic imaging delivering low doses of radiation often accompany human mesenchymal stem cells (MSCs)-based therapies. However, effects of low dose radiation on MSCs are poorly characterized. Here we examine patterns of phosphorylated histone H2AX (γH2AX) and phospho-S1981 ATM (pATM) foci formation in human gingiva-derived MSCs exposed to X-rays in time-course and dose-response experiments. Both γH2AX and pATM foci accumulated linearly with dose early after irradiation (5-60 min), with a maximum induction observed at 30-60 min (37 ± 3 and 32 ± 3 foci/cell/Gy for γH2AX and pATM, respectively). The number of γH2AX foci produced by intermediate doses (160 and 250 mGy) significantly decreased (40-60%) between 60 and 240 min post-irradiation, indicating rejoining of DNA double-strand breaks. In contrast, γH2AX foci produced by low doses (20-80 mGy) did not change after 60 min. The number of pATM foci between 60 and 240 min decreased down to control values in a dose-independent manner. Similar kinetics was observed for pATM foci co-localized with γH2AX foci. Collectively, our results suggest differential DNA double-strand break signaling and processing in response to low vs. intermediate doses of X-rays in human MSCs. Furthermore, mechanisms governing the prolonged persistence of γH2AX foci in these cells appear to be ATM-independent.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Encía/efectos de la radiación , Histonas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de la radiación , Adulto , Proteínas de la Ataxia Telangiectasia Mutada/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Relación Dosis-Respuesta en la Radiación , Femenino , Encía/metabolismo , Voluntarios Sanos , Humanos , Microscopía Fluorescente , Fosforilación , Transducción de Señal , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...