Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1333085, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344180

RESUMEN

Jojoba (Simmondsia chinensis L.) wax was previously reported to increase cutaneous wound healing, ameliorate acne and psoriasis manifestations, and reduce oxidative stress and inflammation. However, its potential cosmetic properties have not been fully investigated. Thus, the current study aimed to evaluate the anti-inflammatory activities of jojoba wax and its impact on the synthesis of extracellular components following topical application. The fatty acid and fatty alcohol profiles of two industrial and two lab-scale cold-press jojoba waxes were analyzed along with total tocopherol and phytosterol content. The dermo-cosmetic effect of all jojoba wax preparations was evaluated ex-vivo, using the human skin organ culture model, which emulates key features of intact tissue. The ability of jojoba wax to reduce secreted levels of key pro-inflammatory cytokines and the safety of the applications in the ex-vivo model were evaluated. In addition, the impact on the synthesis of pro-collagen and hyaluronic acid levels upon treatment was investigated. The results demonstrate that topically applied jojoba wax can reduce LPS-induced secretion of IL-6, IL-8, and TNFα by approx. 30% compared to untreated skin. This effect was enhanced when treatment was combined with low non-toxic levels of Triton X-100, and its efficacy was similar to the anti-inflammatory activity of dexamethasone used as a positive control. In addition, mRNA and protein levels of collagen III and synthesis of hyaluronic acid were markedly increased upon topical application of jojoba. Moreover, the enhanced content of extracellular matrix (ECM) components correlated with the enhanced expression of TGFß1. Collectively, our results further demonstrate that jojoba can reduce local skin inflammation, and this effect may be increased by emulsifier which increases its bioavailability. In addition, the finding that topical application of jojoba wax enhances the synthesis of pro-collagen and hyaluronic acid and may be beneficial in the treatment of age-related manifestations.

2.
Carbohydr Polym ; 314: 120947, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37173046

RESUMEN

Herein, we report biocompatible hydrogel for wound healing that was prepared using nature-sourced building blocks. For the first time, OCS was employed as a building macromolecule to form bulk hydrogels along with the nature-sourced nucleoside derivative (inosine dialdehyde, IdA) as the cross-linker. A strong correlation was obtained between the mechanical properties and stability of the prepared hydrogels with a cross-linker concentration. The Cryo-SEM images of IdA/OCS hydrogels showed an interconnected spongy-like porous structure. Alexa 555 labeled bovine serum albumin was incorporated into the hydrogels matrix. The release kinetics studies under physiological conditions indicated that cross-linker concentration could also control the release rate. The potential of hydrogels in wound healing applications was tested in vitro and ex vivo on human skin. Topical application of the hydrogel was excellently tolerated by the skin with no impairment of epidermal viability or irritation, determined by MTT and IL-1α assays, respectively. The hydrogels were used to load and deliver epidermal growth factor (EGF), showing an increase in its ameliorating action, effectively enhancing wound closure inflicted by punch biopsy. Furthermore, BrdU incorporation assay performed in both fibroblast and keratinocyte cells revealed an increased proliferation in hydrogel-treated cells and an enhancement of EGF impact in keratinocytes.


Asunto(s)
Factor de Crecimiento Epidérmico , Nucleósidos , Humanos , Factor de Crecimiento Epidérmico/farmacología , Hidrogeles/farmacología , Hidrogeles/química , Cicatrización de Heridas
3.
Nanoscale Adv ; 4(9): 2124-2133, 2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-36133443

RESUMEN

In this work, we present biocompatible nanocarriers based on modified polysaccharides capable of transporting insulin macromolecules through human skin without any auxiliary techniques. N-Alkylamidated carboxymethyl cellulose (CMC) derivatives CMC-6 and CMC-12 were synthesized and characterized using attenuated total reflectance Fourier transform infrared (ATR-FTIR) and nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography and thermogravimetric, calorimetric and microscopic techniques. The prepared modified polysaccharides spontaneously assemble into soft nanoaggregates capable of adjusting to both aqueous and lipid environments. Due to this remarkable self-adjustment ability, CMC-6 and CMC-12 were examined for transdermal delivery of insulin. First, a significant increase in the amount of insulin present in lipid media upon encapsulation in CMC-12 was observed in vitro. Then, ex vivo studies on human skin were conducted. Those studies revealed that the CMC-12 carrier led to an enhancement of transdermal insulin delivery, showing a remarkable 85% insulin permeation. Finally, toxicity studies revealed no alteration in epidermal viability upon treatment and the absence of any skin irritation or amplified cytokine release, verifying the safety of the prepared carriers. Three-dimensional (3D) molecular modeling and conformational dynamics of CMC-6 and CMC-12 polymer chains explained their binding capacities and the ability to transport insulin macromolecules. The presented carriers have the potential to become a biocompatible, safe and feasible platform for the design of effective systems for transdermal delivery of bioactive macromolecules in medicine and cosmetics. In addition, transdermal insulin delivery reduces the pain and infection risk in comparison to injections, which may increase the compliance and glycemic control of diabetic patients.

4.
Artículo en Inglés | MEDLINE | ID: mdl-34886097

RESUMEN

Air pollution has been repeatedly linked to numerous health-related disorders, including skin sensitization, oxidative imbalance, premature extrinsic aging, skin inflammation, and increased cancer prevalence. Nrf2 is a key player in the endogenous protective mechanism of the skin. We hypothesized that pharmacological activation of Nrf2 might reduce the deleterious action of diesel particulate matter (DPM), evaluated in HaCaT cells. SK-119, a recently synthesized pharmacological agent as well as 2,2'-((1E,1'E)-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(benzene-1,3,5-triol) (SH-29) were first evaluated in silico, suggesting a potent Nrf2 activation capacity that was validated in vitro. In addition, both compounds were able to attenuate key pathways underlying DPM damage, including cytosolic and mitochondrial reactive oxygen species (ROS) generation, tested by DC-FDA and MitoSOX fluorescent dye, respectively. This effect was independent of the low direct scavenging ability of the compounds. In addition, both SK-119 and SH-29 were able to reduce DPM-induced IL-8 hypersecretion in pharmacologically relevant concentrations. Lastly, the safety of both compounds was evaluated and demonstrated in the ex vivo human skin organ culture model. Collectively, these results suggest that Nrf2 activation by SK-119 and SH-29 can revert the deleterious action of air pollution.


Asunto(s)
Contaminación del Aire , Factor 2 Relacionado con NF-E2 , Células HaCaT , Humanos , Queratinocitos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Material Particulado/toxicidad , Especies Reactivas de Oxígeno
5.
Molecules ; 26(19)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34641603

RESUMEN

Jojoba (Simmondsia chinensis (Link) Schneider) wax is used for various dermatological and pharmaceutical applications. Several reports have previously shown beneficial properties of Jojoba wax and extracts, including antimicrobial activity. The current research aimed to elucidate the impact of Jojoba wax on skin residential bacterial (Staphylococcus aureus and Staphylococcus epidermidis), fungal (Malassezia furfur), and virus infection (herpes simplex 1; HSV-1). First, the capacity of four commercial wax preparations to attenuate their growth was evaluated. The results suggest that the growth of Staphylococcus aureus, Staphylococcus epidermidis, and Malassezia furfur was unaffected by Jojoba in pharmacologically relevant concentrations. However, the wax significantly attenuated HSV-1 plaque formation. Next, a complete dose-response analysis of four different Jojoba varieties (Benzioni, Shiloah, Hatzerim, and Sheva) revealed a similar anti-viral effect with high potency (EC50 of 0.96 ± 0.4 µg/mL) that blocked HSV-1 plaque formation. The antiviral activity of the wax was also confirmed by real-time PCR, as well as viral protein expression by immunohistochemical staining. Chemical characterization of the fatty acid and fatty alcohol composition was performed, showing high similarity between the wax of the investigated varieties. Lastly, our results demonstrate that the observed effects are independent of simmondsin, repeatedly associated with the medicinal impact of Jojoba wax, and that Jojoba wax presence is required to gain protection against HSV-1 infection. Collectively, our results support the use of Jojoba wax against HSV-1 skin infections.


Asunto(s)
Antiinfecciosos/farmacología , Antivirales/farmacología , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1/efectos de los fármacos , Ceras/farmacología , Acetonitrilos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Ciclohexanos/farmacología , Relación Dosis-Respuesta a Droga , Ácidos Grasos/química , Ácidos Grasos/farmacología , Alcoholes Grasos/química , Alcoholes Grasos/farmacología , Glucósidos/farmacología , Humanos , Malassezia/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Células Vero , Ceras/química
6.
Nutrients ; 12(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971852

RESUMEN

Microalgae have been considered as a renewable source of nutritional, cosmetic and pharmaceutical compounds. The ability to produce health-beneficial long-chain polyunsaturated fatty acids (LC-PUFA) is of high interest. LC-PUFA and their metabolic lipid mediators, modulate key inflammatory pathways in numerous models. In particular, the metabolism of arachidonic acid under inflammatory challenge influences the immune reactivity of macrophages. However, less is known about another omega-6 LC-PUFA, dihomo-γ-linolenic acid (DGLA), which exhibits potent anti-inflammatory activities, which contrast with its delta-5 desaturase product, arachidonic acid (ARA). In this work, we examined whether administrating DGLA would modulate the inflammatory response in the RAW264.7 murine macrophage cell line. DGLA was applied for 24 h in the forms of carboxylic (free) acid, ethyl ester, and ethyl esters obtained from the DGLA-accumulating delta-5 desaturase mutant strain P127 of the green microalga Lobosphaera incisa. DGLA induced a dose-dependent increase in the RAW264.7 cells' basal secretion of the prostaglandin PGE1. Upon bacterial lipopolysaccharide (LPS) stimuli, the enhanced production of pro-inflammatory cytokines, tumor necrosis factor alpha (TNFα) and interleukin 1ß (IL-1ß), was affected little by DGLA, while interleukin 6 (IL-6), nitric oxide, and total reactive oxygen species (ROS) decreased significantly. DGLA administered at 100 µM in all forms attenuated the LPS-induced expression of the key inflammatory genes in a concerted manner, in particular iNOS, IL-6, and LxR, in the form of free acid. PGE1 was the major prostaglandin detected in DGLA-supplemented culture supernatants, whose production prevailed over ARA-derived PGE2 and PGD2, which were less affected by LPS-stimulation compared with the vehicle control. An overall pattern of change indicated DGLA's induced alleviation of the inflammatory state. Finally, our results indicate that microalgae-derived, DGLA-enriched ethyl esters (30%) exhibited similar activities to DGLA ethyl esters, strengthening the potential of this microalga as a potent source of this rare anti-inflammatory fatty acid.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico/administración & dosificación , Antiinflamatorios/administración & dosificación , Inflamación/prevención & control , Macrófagos/efectos de los fármacos , Microalgas/química , Animales , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/genética , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Prostaglandinas/metabolismo , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...