Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Iowa Orthop J ; 44(1): 63-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919359

RESUMEN

Background: The specific aim of this study was to evaluate the mechanical properties of cement prepared with the advanced one-step mixing system and whether the addition of vacuum conditions yielded an appreciable improvement in the biomechanical strength or overall quality of bone cement. Methods: The advanced one-step mixing system was used. Twelve specimens were prepared by mixing under vacuum conditions and 12 specimens were prepared by mixing without a vacuum. Radiographs of cement specimens were analyzed to determine the porosity of the test region. Tensile testing of the specimens was performed with a loading rate of 2.54mm/min at room temperature. The ultimate tensile strength (UTS) and the tensile elastic modulus (E) were determined for each sample. Results: The UTS of the bone cement samples mixed under vacuum conditions were not significantly different than those mixed without vacuum (vacuum: 39±6MPa; non-vacuum: 35±6MPa; p=0.637). The E of samples mixed under vacuum conditions was significantly higher than the bone cement mixed without vacuum (vacuum: 2.78±0.06GPa; non-vacuum: 2.63±0.15GPa; p=0.019). Radiographic images showed samples mixed under vacuum conditions contained fewer defects than the samples mixed without vacuum (vacuum: 3.5%±3.3% (range: 0.0%-9.0%); non-vacuum: 6.9%±1.0% (range: 4.6%-8.2%)). Conclusion: Mixing bone cement with the advanced one-step mixing system under vacuum conditions does not produce an appreciable difference in the UTS of the bone cement in a bench biomechanical testing model compared to the bone cement mixed without vacuum. It does, however, create a less porous cement mixture with a higher E compared to cement mixed without vacuum. Level of Evidence: V.


Asunto(s)
Cementos para Huesos , Ensayo de Materiales , Resistencia a la Tracción , Vacio , Polimetil Metacrilato/química , Humanos , Módulo de Elasticidad , Fenómenos Biomecánicos , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA