Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 21887, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33318497

RESUMEN

The pure alpha emitter 148Gd may have a significant radiological impact in terms of internal dose to exposed humans in case of accidental releases from a spallation source using a tungsten target, such as the one to be used in the European Spallation Source (ESS). In this work we aim to present an approach to indirectly estimate the whole-body burden of 148Gd and the associated committed effective dose in exposed humans, by means of high-resolution gamma spectrometry of the gamma-emitting radiogadolinium isotopes 146Gd and 153Gd that are accompanied by 148Gd generated from the operation of the tungsten target. Theoretical minimum detectable whole-body activity (MDA) and associated internal doses from 148Gd are calculated using a combination of existing biokinetic models and recent computer simulation studies on the generated isotope ratios of 146Gd/148Gd and 153Gd/148Gd in the ESS target. Of the two gamma-emitting gadolinium isotopes, 146Gd is initially the most sensitive indicator of the presence of 148Gd if whole-body counting is performed within a month after the release, using the twin photo peaks of 146Gd centered at 115.4 keV (MDA < 1 Bq for ingested 148Gd, and < 25 Bq for inhaled 148Gd). The corresponding minimum detectable committed effective doses will be less than 1 µSv for ingested 148Gd, but substantially higher for inhaled 148Gd (up to 0.3 mSv), depending on operation time of the target prior to the release. However, a few months after an atmospheric release, 153Gd becomes a much more sensitive indicator of body burdens of 148Gd, with a minimum detectable committed effective doses ranging from 18 to 77 µSv for chronic ingestion and between 0.65 to 2.7 mSv for acute inhalation in connection to the release. The main issue with this indirect method for 148Gd internal dose estimation, is whether the primary photon peaks from 146 and 153Gd can be detected undisturbed. Preliminary simulations show that nuclides such as 182Ta may potentially create perturbations that could impair this evaluation method, and which impact needs to be further studied in future safety assessments of accidental target releases.

2.
Radiat Prot Dosimetry ; 169(1-4): 158-64, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27179119

RESUMEN

The purpose of this study was to perform an initial investigation of the possibility to determine breast cancer growth rate with (14)C bomb-pulse dating. Tissues from 11 breast cancers, diagnosed in 1983, were retrieved from a regional biobank. The estimated average age of the majority of the samples overlapped the year of collection (1983) within 3σ Thus, this first study of tumour tissue has not yet demonstrated that (14)C bomb-pulse dating can obtain information on the growth of breast cancer. However, with further refinement, involving extraction of cell types and components, there is a possibility that fundamental knowledge of tumour biology might still be gained by the bomb-pulse technique. Additionally, δ (13)C and δ (15)N analyses were performed to obtain dietary and metabolic information, and to serve as a base for improvement of the age determination.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/fisiopatología , Radioisótopos de Carbono/química , Dieta , Bancos de Muestras Biológicas , Calibración , Isótopos de Carbono/química , Progresión de la Enfermedad , Femenino , Humanos , Nitrógeno , Isótopos de Nitrógeno/química , Proyectos Piloto , Datación Radiométrica , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...