Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Res Int ; 2021: 5535399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532502

RESUMEN

Under changing climate, water scarcity and frequent incidence of diseases like stripe rust pose the biggest threat to sustainable crop production which jeopardizes nutritional security. A study was executed to rationalize crop water requirement and evaluate wheat (Triticum aestivum L. cv. Bohoth 3) yield losses by stripe rust infection under irrigated conditions. Seven water treatments included three irrigations in three stages/season (S 3), four irrigations (S 4), and five irrigations (S 5) at the different sensitive growth stages, full (F), and two deficit irrigation levels including D 1 = 80% of field capacity (FC) and D 2 = 70% (FC) along with farmers' practice of irrigation as control (C). Results revealed that F and D 1 boosted grain yield by 31 and 14%. Overall, F irrigation regime resulted in the highest grain production (2.93 ton/ha) as well as biomass yield (13.2 ton/ha). However, D 2 had the highest value of grain protein (15.9%) and achieved the highest application efficiency (AE) at midseason (54.6%) and end season (59.6%), and the lowest AE was under S 3. Also, halting irrigation at the milky stage (S 5) led to a significant decrease in irrigation water use efficiency as compared to D 1. However, cutting irrigation at the end of seedling, heading, and milky stages (S 3) caused a significant reduction in E a, crop water use (ETa), and 1000 grain weight in comparison with all other treatments. Regarding yellow rust, S 3 irrigation regime resulted in the lowest incidence of yellow rust infection. The highest irrigation and water use efficiency values were recorded under D 1 (0.79 and 0.59 kg/m3), and the lowest values were obtained for control. Hence, the deficit irrigation treatment D 1 could be recommended as the best appropriate strategy to save more water and to improve the water productivity under Yemeni agroclimatic conditions.


Asunto(s)
Riego Agrícola/métodos , Agricultura/métodos , Triticum/metabolismo , Biomasa , Cambio Climático , Grano Comestible/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Hojas de la Planta , Estaciones del Año , Suelo , Triticum/crecimiento & desarrollo , Agua
2.
Genes (Basel) ; 12(6)2021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073848

RESUMEN

Genome-editing (GE) is having a tremendous influence around the globe in the life science community. Among its versatile uses, the desired modifications of genes, and more importantly the transgene (DNA)-free approach to develop genetically modified organism (GMO), are of special interest. The recent and rapid developments in genome-editing technology have given rise to hopes to achieve global food security in a sustainable manner. We here discuss recent developments in CRISPR-based genome-editing tools for crop improvement concerning adaptation, opportunities, and challenges. Some of the notable advances highlighted here include the development of transgene (DNA)-free genome plants, the availability of compatible nucleases, and the development of safe and effective CRISPR delivery vehicles for plant genome editing, multi-gene targeting and complex genome editing, base editing and prime editing to achieve more complex genetic engineering. Additionally, new avenues that facilitate fine-tuning plant gene regulation have also been addressed. In spite of the tremendous potential of CRISPR and other gene editing tools, major challenges remain. Some of the challenges are related to the practical advances required for the efficient delivery of CRISPR reagents and for precision genome editing, while others come from government policies and public acceptance. This review will therefore be helpful to gain insights into technological advances, its applications, and future challenges for crop improvement.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Fitomejoramiento/métodos , Genoma de Planta
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 77(3): 643-51, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20678958

RESUMEN

Tetra((1-hydroxyiminomethylnaphthalen-2-yloxy)methyl)ethene (THIMNYOME), H(4)L, was synthesized by the agents of 2-hydroxy-1-naphtaldehyde, tetra(bromomethyl)ethene and hydroxylamine hydrochloride in two steps. Characterization of THIMNYOME and its dinuclear complexes was made by elemental analyses, IR, (1)H- and (13)C NMR, UV-vis, electrospray ionisation mass spectra, molar conductivities and magnetic susceptibility measurements. In the light of these results, it was suggested that the ligand coordinate to each metal atom by the two ether oxygen, two nitrogen atoms of oxime imine (CN) and an axial oxygen of perchlorate to form pseudo square-pyramidal complexes with Ni(II), Cu(II) and Zn(II). Molar conductivity measurements reveal that all the complexes are non-electrolytes. In addition, the full geometric optimization of the tetraoxime ligand (4) has been made by the B3LYP/6-31G(d) level in order to establish a stable conformation. Additionally, all the complex structures have been studied in the B3LYP/LANL2DZ level. NBO charge distribution and the characteristics of frontier molecular orbitals of these complexes have also been investigated in order to see the electrons movement between ligand and metal atom in the same level.


Asunto(s)
Aldehídos/química , Complejos de Coordinación/química , Naftalenos/química , Complejos de Coordinación/síntesis química , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Protones , Espectrometría de Masa por Ionización de Electrospray , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...