Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Crit Care Med ; 37(8): 2427-35, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19487928

RESUMEN

OBJECTIVE: To evaluate electroencephalogram-derived quantitative variables after out-of-hospital cardiac arrest. DESIGN: Prospective study. SETTING: University hospital intensive care unit. PATIENTS: Thirty comatose adult patients resuscitated from a witnessed out-of-hospital ventricular fibrillation cardiac arrest and treated with induced hypothermia (33 degrees C) for 24 hrs. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Electroencephalography was registered from the arrival at the intensive care unit until the patient was extubated or transferred to the ward, or 5 days had elapsed from cardiac arrest. Burst-suppression ratio, response entropy, state entropy, and wavelet subband entropy were derived. Serum neuron-specific enolase and protein 100B were measured. The Pulsatility Index of Transcranial Doppler Ultrasonography was used to estimate cerebral blood flow velocity. The Glasgow-Pittsburgh Cerebral Performance Categories was used to assess the neurologic outcome during 6 mos after cardiac arrest. Twenty patients had Cerebral Performance Categories of 1 to 2, one patient had a Cerebral Performance Categories of 3, and nine patients had died (Cerebral Performance Categories of 5). Burst-suppression ratio, response entropy, and state entropy already differed between good (Cerebral Performance Categories 1-2) and poor (Cerebral Performance Categories 3-5) outcome groups (p = .011, p = .011, p = .008) during the first 24 hrs after cardiac arrest. Wavelet subband entropy was higher in the good outcome group between 24 and 48 hrs after cardiac arrest (p = .050). All patients with status epilepticus died, and their wavelet subband entropy values were lower (p = .022). Protein 100B was lower in the good outcome group on arrival at ICU (p = .010). After hypothermia treatment, neuron-specific enolase and protein 100B values were lower (p = .002 for both) in the good outcome group. The Pulsatility Index was also lower in the good outcome group (p = .004). CONCLUSIONS: Quantitative electroencephalographic variables may be used to differentiate patients with good neurologic outcomes from those with poor outcomes after out-of-hospital cardiac arrest. The predictive values need to be determined in a larger, separate group of patients.


Asunto(s)
Electroencefalografía , Indicadores de Salud , Paro Cardíaco/terapia , Hipotermia Inducida , Hipoxia-Isquemia Encefálica/diagnóstico , Adulto , Anciano , Circulación Cerebrovascular , Femenino , Finlandia , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Sensibilidad y Especificidad , Factores de Tiempo , Resultado del Tratamiento
2.
Anesthesiology ; 107(6): 928-38, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18043061

RESUMEN

BACKGROUND: Sevoflurane may induce epileptiform electroencephalographic activity leading to unstable Bispectral Index numbers, underestimating the hypnotic depth of anesthesia. The authors developed a method for the quantification of epileptiform electroencephalographic activity during sevoflurane anesthesia. METHODS: Electroencephalographic data from 60 patients under sevoflurane mask induction were used in the analysis. Electroencephalographic data were visually classified. A novel electroencephalogram-derived quantity, wavelet subband entropy (WSE), was developed. WSE variables were calculated from different frequency bands. Performance of the WSE in detection and quantification of epileptiform electroencephalographic activity and the ability of the WSE to recognize misleading Bispectral Index readings caused by epileptiform activity were evaluated. RESULTS: Two WSE variables were found to be sufficient for the quantification of epileptiform activity: WSE from the frequency bands 4-16 and 16-32 Hz. The lower frequency band was used for monophasic pattern monitoring, and the higher frequency band was used for spike activity monitoring. WSE values of the lower and higher bands followed the time evolution of epileptiform activity with prediction probabilities of 0.809 (SE, 0.007) and 0.804 (SE, 0.007), respectively. In deep anesthesia with epileptiform activity, WSE detected electroencephalographic patterns causing Bispectral Index readings greater than 60, with event sensitivity of 97.1%. CONCLUSIONS: The developed method proved useful in detection and quantification of epileptiform electroencephalographic activity during sevoflurane anesthesia. In the future, it may improve the understanding of electroencephalogram-derived information by assisting in recognizing misleading readings of depth-of-anesthesia monitors. The method also may assist in minimizing the occurrence of epileptiform activity and seizures during sevoflurane anesthesia.


Asunto(s)
Electroencefalografía/efectos de los fármacos , Máscaras Laríngeas , Éteres Metílicos/administración & dosificación , Adulto , Anestesia por Inhalación/instrumentación , Anestesia por Inhalación/métodos , Humanos , Persona de Mediana Edad , Monitoreo Intraoperatorio/instrumentación , Monitoreo Intraoperatorio/métodos , Sevoflurano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...