Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Expert Opin Drug Deliv ; : 1-16, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38962823

RESUMEN

INTRODUCTION: This review discusses novel hybrid assemblies that are based on liposomal formulations. The focus is on the hybrid constructs that are formed through the integration of liposomes/vesicles with other nano-objects such as nucleic acid nanostructures and metallic nanoparticles. The aim is to introduce some of the recent, specific examples that bridge different technologies and thus may form a new platform for advanced drug delivery applications. AREAS COVERED: We present selected examples of liposomal formulations combined with complex nanostructures either based on biomolecules like DNA origami or on metallic materials - metal/metal oxide/magnetic particles and metallic nanostructures, such as metal organic frameworks - together with their applications in drug delivery and beyond. EXPERT OPINION: Merging the above-mentioned techniques could lead to development of drug delivery vehicles with the most desirable properties; multifunctionality, biocompatibility, high drug loading efficiency/accuracy/capacity, and stimuli-responsiveness. In the near future, we believe that especially the strategies combining dynamic, triggerable and programmable DNA nanostructures and liposomes could be used to create artificial liposome clusters for multiple applications such as examining protein-mediated interactions between lipid bilayers and channeling materials between liposomes for enhanced pharmacokinetic properties in drug delivery.

2.
Sci Rep ; 14(1): 14071, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890456

RESUMEN

In advanced drug delivery, versatile liposomal formulations are commonly employed for safer and more accurate therapies. Here we report a method that allows a straightforward production of synthetic monodisperse (~ 100 µm) giant unilamellar vesicles (GUVs) using a microfluidic system. The stability analysis based on the microscopy imaging showed that at ambient conditions the produced GUVs had a half-life of 61 ± 2 h. However, it was observed that ~ 90% of the calcein dye that was loaded into GUVs was transported into a surrounding medium in 24 h, thus indicating that the GUVs may release these small dye molecules without distinguishable membrane disruption. We further demonstrated the feasibility of our method by loading GUVs with larger and very different cargo objects; small soluble fluorescent proteins and larger magnetic microparticles in a suspension. Compared to previously reported microfluidics-based production techniques, the obtained results indicate that our simplified method could be equally harnessed in creating GUVs with less cost, effort and time, which could further benefit studying closed membrane systems.


Asunto(s)
Microfluídica , Liposomas Unilamelares , Liposomas Unilamelares/química , Microfluídica/métodos , Fluoresceínas/química , Colorantes Fluorescentes/química , Técnicas Analíticas Microfluídicas/métodos
3.
Ultramicroscopy ; 261: 113949, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38503019

RESUMEN

Nanoparticles in microscopy images are usually analyzed qualitatively or manually and there is a need for autonomous quantitative analysis of these objects. In this paper, we present a physics-based computational model for accurate segmentation and geometrical analysis of one-dimensional deformable overlapping objects from microscopy images. This model, named Nano1D, has four steps of preprocessing, segmentation, separating overlapped objects and geometrical measurements. The model is tested on SEM images of Ag and Au nanowire taken from different microscopes, and thermally fragmented Ag nanowires transformed into nanoparticles with different lengths, diameters, and population densities. It successfully segments and analyzes their geometrical characteristics including lengths and average diameter. The function of the algorithm is not undermined by the size, number, density, orientation and overlapping of objects in images. The main strength of the model is shown to be its ability to segment and analyze overlapping objects successfully with more than 99 % accuracy, while current machine learning and computational models suffer from inaccuracy and inability to segment overlapping objects. Benefiting from a graphical user interface, Nano1D can analyze 1D nanoparticles including nanowires, nanotubes, nanorods in addition to other 1D features of microstructures like microcracks, dislocations etc.

4.
Anal Chim Acta ; 1272: 341397, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355339

RESUMEN

Water-in-oil droplets allow performing massive experimental parallelization and high-throughput studies, such as single-cell experiments. However, analyzing such vast arrays of droplets usually requires advanced expertise and sophisticated workflow tools, which limits accessibility for a wider user base in the fields of chemistry and biology. Thus, there is a need for more user-friendly tools for droplet analysis. In this article, we deliver a set of analytical pipelines for user-friendly analysis of typical scenarios in droplet experiments. We built pipelines that combine various open-source image-analysis software with a custom-developed data processing tool called "EasyFlow". Our pipelines are applicable to the typical experimental scenarios that users encounter when working with droplets: i) mono- and polydisperse droplets, ii) brightfield and fluorescent images, iii) droplet and object detection, iv) signal profile of droplets and objects (e.g., fluorescence).


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Programas Informáticos , Procesamiento de Imagen Asistido por Computador/métodos , Colorantes , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...