Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
PLoS Pathog ; 20(5): e1012205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701094

RESUMEN

Mycobacterium tuberculosis (Mtb) infects lung myeloid cells, but the specific Mtb-permissive cells and host mechanisms supporting Mtb persistence during chronic infection are incompletely characterized. We report that after the development of T cell responses, CD11clo monocyte-derived cells harbor more live Mtb than alveolar macrophages (AM), neutrophils, and CD11chi monocyte-derived cells. Transcriptomic and functional studies revealed that the lysosome pathway is underexpressed in this highly permissive subset, characterized by less lysosome content, acidification, and proteolytic activity than AM, along with less nuclear TFEB, a regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in CD11clo monocyte-derived cells but promotes recruitment of monocytes that develop into permissive lung cells, mediated by the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome functions of macrophages in vitro and in vivo, improving control of Mtb infection. Our results suggest that Mtb exploits lysosome-poor lung cells for persistence and targeting lysosome biogenesis is a potential host-directed therapy for tuberculosis.


Asunto(s)
Lisosomas , Macrófagos Alveolares , Monocitos , Mycobacterium tuberculosis , Lisosomas/metabolismo , Lisosomas/microbiología , Animales , Monocitos/metabolismo , Monocitos/microbiología , Ratones , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/metabolismo , Pulmón/microbiología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Enfermedad Crónica , Tuberculosis Pulmonar/microbiología , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Humanos , Tuberculosis/microbiología , Tuberculosis/inmunología , Tuberculosis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo
2.
Front Immunol ; 15: 1378040, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698866

RESUMEN

Background: Interleukin-17-producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with human immunodeficiency virus (HIV) disproportionately affects distinct Th17-cell subsets that respond to Mtb is incompletely defined. Methods: We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by liquid chromatography-mass spectrometry (LC/MS) on plasma and tested the hypothesis that tryptophan catabolism influences Th17-cell frequencies in this context. Results: We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3-cells of which subset 1 was significantly reduced in latent tuberculosis infection (LTBI) with HIV-ART, yet Mtb-responsive IL-17-producing CD4 T cells were preserved; we found that IL-17-producing CD4 T cells dominate the response to Mtb antigen but not cytomegalovirus (CMV) antigen or staphylococcal enterotoxin B (SEB), and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17-cell frequencies. Conclusions: We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL-17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.


Asunto(s)
Antígenos Bacterianos , Infecciones por VIH , Interleucina-17 , Tuberculosis Latente , Mycobacterium tuberculosis , Células Th17 , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antígenos Bacterianos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Inmunofenotipificación , Interleucina-17/metabolismo , Interleucina-17/inmunología , Quinurenina/metabolismo , Tuberculosis Latente/inmunología , Tuberculosis Latente/microbiología , Mycobacterium tuberculosis/inmunología , Fenotipo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Células Th17/inmunología , Células Th17/metabolismo , Triptófano/metabolismo
3.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496518

RESUMEN

CD4 T cells are essential for immunity to M. tuberculosis (Mtb), and emerging evidence indicates that IL-17-producing Th17 cells contribute to immunity to Mtb. While identifying protective T cell effector functions is important for TB vaccine design, T cell antigen specificity is also likely to be important. To identify antigens that induce protective immunity, we reasoned that as in other pathogens, effective immune recognition drives sequence diversity in individual Mtb antigens. We previously identified Mtb genes under evolutionary diversifying selection pressure whose products we term Rare Variable Mtb Antigens (RVMA). Here, in two distinct human cohorts with recent exposure to TB, we found that RVMA preferentially induce CD4 T cells that express RoRγt and produce IL-17, in contrast to 'classical' Mtb antigens that induce T cells that produce IFNγ. Our results suggest that RVMA can be valuable antigens in vaccines for those already infected with Mtb to amplify existing antigen-specific Th17 responses to prevent TB disease.

4.
J Clin Tuberc Other Mycobact Dis ; 35: 100425, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38468819

RESUMEN

A teenage girl presented with fever and altered mental status. MRI showed diffuse leptomeningeal enhancement of the brain and spine. She was diagnosed by a positive cerebrospinal fluid (CSF) culture with tuberculous (TB) meningitis and was started on anti-TB medications and corticosteroids. Her mental status improved, but she was noted to have proximal weakness of the lower extremities. In the course of tapering corticosteroids at week 11 of anti-TB therapy, she became acutely confused and febrile. MRI demonstrated interval development of tuberculomas in the brain and a mass lesion in the thoracic spine causing cord compression. Given the clinical picture was suggestive of a paradoxical reaction, the dose of corticosteroids was increased. Infliximab was added when repeat MRI revealed enlargement of the mass lesion in the spine with worsening cord compression. She was successfully tapered off of corticosteroids. Over several months, the patient's motor function recovered fully, and she returned to ambulating without assistance.

5.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36711855

RESUMEN

Background: Interleukin 17 producing CD4 T cells contribute to the control of Mycobacterium tuberculosis (Mtb) infection in humans; whether infection with Human Immunodeficiency Virus (HIV) disproportionately affects distinct Th17 cell subsets that respond to Mtb is incompletely defined. Methods: We performed high-definition characterization of circulating Mtb-specific Th17 cells by spectral flow cytometry in people with latent TB and treated HIV (HIV-ART). We also measured kynurenine pathway activity by LC/MS on plasma and tested the hypothesis that tryptophan catabolism influences Th17 cell frequencies in this context. Results: We identified two subsets of Th17 cells: subset 1 defined as CD4+Vα7.2-CD161+CD26+ and subset 2 defined as CD4+Vα7.2-CCR6+CXCR3- cells of which subset 1 was significantly reduced in LTBI with HIV-ART, yet Mtb-responsive IL17-producing CD4 T cells were preserved; we found that IL17-producing CD4 T cells dominate the response to Mtb antigen but not CMV antigen or staphylococcal enterotoxin B (SEB); and tryptophan catabolism negatively correlates with both subset 1 and subset 2 Th17 cell frequencies. Conclusions: We found differential effects of ART-suppressed HIV on distinct subsets of Th17 cells, that IL17-producing CD4 T cells dominate responses to Mtb but not CMV antigen or SEB, and that kynurenine pathway activity is associated with decreases of circulating Th17 cells that may contribute to tuberculosis immunity.

6.
PLoS One ; 18(11): e0289442, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38015898

RESUMEN

Non-polyadenylated RNA includes a large subset of crucial regulators of RNA expression and constitutes a substantial portion of the transcriptome, playing essential roles in gene regulation. For example, enhancer RNAs are long non-coding RNAs that perform enhancer-like functions, are bi-directionally transcribed, and usually lack polyA tails. This paper presents a novel method, selSeq, that selectively removes mRNA and pre-mRNA from samples enabling the selective sequencing of crucial regulatory elements, including non-polyadenylated RNAs such as long non-coding RNA, enhancer RNA, and non-canonical mRNA.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación de la Expresión Génica , ARN Mensajero/genética , Transcriptoma , Precursores del ARN
7.
PLoS One ; 18(9): e0288687, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37708184

RESUMEN

Targeted amplicon sequencing to identify pathogens, resistance-conferring mutations, and strain types is an important tool in diagnosing and treating infections. However, due to the short read limitations of Illumina sequencing, many applications require the splitting of limited clinical samples between two reactions. Here, we outline hairpin Illumina single-tube sequencing PCR (hissPCR) which allows for the generation of overlapping amplicons containing Illumina indexes and adapters in a single tube, effectively extending the Illumina read length while maintaining reagent and sample input requirements.


Asunto(s)
Bioensayo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Reacción en Cadena de la Polimerasa
8.
Res Sq ; 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37398178

RESUMEN

Mycobacterium tuberculosis (Mtb) persists in lung myeloid cells during chronic infection. However, the mechanisms allowing Mtb to evade elimination are not fully understood. Here, we determined that in chronic phase, CD11clo monocyte-derived lung cells termed MNC1 (mononuclear cell subset 1), harbor more live Mtb than alveolar macrophages (AM), neutrophils, and less permissive CD11chi MNC2. Transcriptomic and functional studies of sorted cells revealed that the lysosome biogenesis pathway is underexpressed in MNC1, which have less lysosome content, acidification, and proteolytic activity than AM, and less nuclear TFEB, a master regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in MNC1. Instead, Mtb recruits MNC1 and MNC2 to the lungs for its spread from AM to these cells via its ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome function of primary macrophages and MNC1 and MNC2 in vivo, improving control of Mtb infection. Our results indicate that Mtb exploits lysosome-poor monocyte-derived cells for in vivo persistence, suggesting a potential target for host-directed tuberculosis therapy.

9.
PLoS Pathog ; 19(4): e1010893, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014917

RESUMEN

In settings with high tuberculosis (TB) endemicity, distinct genotypes of the Mycobacterium tuberculosis complex (MTBC) often differ in prevalence. However, the factors leading to these differences remain poorly understood. Here we studied the MTBC population in Dar es Salaam, Tanzania over a six-year period, using 1,082 unique patient-derived MTBC whole-genome sequences (WGS) and associated clinical data. We show that the TB epidemic in Dar es Salaam is dominated by multiple MTBC genotypes introduced to Tanzania from different parts of the world during the last 300 years. The most common MTBC genotypes deriving from these introductions exhibited differences in transmission rates and in the duration of the infectious period, but little differences in overall fitness, as measured by the effective reproductive number. Moreover, measures of disease severity and bacterial load indicated no differences in virulence between these genotypes during active TB. Instead, the combination of an early introduction and a high transmission rate accounted for the high prevalence of L3.1.1, the most dominant MTBC genotype in this setting. Yet, a longer co-existence with the host population did not always result in a higher transmission rate, suggesting that distinct life-history traits have evolved in the different MTBC genotypes. Taken together, our results point to bacterial factors as important determinants of the TB epidemic in Dar es Salaam.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Mycobacterium tuberculosis/genética , Tanzanía/epidemiología , Tuberculosis/epidemiología , Genotipo , Virulencia
10.
Microbiol Spectr ; : e0412722, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36877083

RESUMEN

Circular DNA offers benefits over linear DNA in diagnostic and field assays, but currently, circular DNA generation is lengthy, inefficient, highly dependent on the length and sequence of DNA, and can result in unwanted chimeras. We present streamlined methods for generating PCR-targeted circular DNA from a 700 bp amplicon of rv0678, the high GC content (65%) gene implicated in Mycobacterium tuberculosis bedaquiline resistance, and demonstrate that these methods work as desired. We employ self-circularization with and without splints, a Gibson cloning-based approach, and novel 2 novel methods for generating pseudocircular DNA. The circular DNA can be used as a template for rolling circle PCR followed by long-read sequencing, allowing for the error correction of sequence data, and improving the confidence in the drug resistance determination and strain identification; and, ultimately, improving patient treatment. IMPORTANCE Antimicrobial resistance is a global health threat, and drug resistant tuberculosis is a principal cause of antimicrobial resistance-related fatality. The long turnaround time and the need for high containment biological laboratories of phenotypic growth-based Mycobacterium tuberculosis drug susceptibility testing often commit patients to months of ineffective treatment, and there is a groundswell of effort in shifting from phenotypic to sequencing-based genotypic assays. Bedaquiline is a key component to newer, all oral, drug resistant, tuberculosis regimens. Thus, we focus our study on demonstrating the circularization of rv0678, the gene that underlies most M. tuberculosis bedaquiline resistance. We present 2 novel methods for generating pseudocircular DNA. These methods greatly reduce the complexity and time needed to generate circular DNA templates for rolling circle amplification and long-read sequencing, allowing for error correction of sequence data, and improving confidence in the drug resistance determination and strain identification.

11.
J Exp Med ; 220(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36920308

RESUMEN

The hallmark of tuberculosis (TB) is the formation of immune cell-enriched aggregates called granulomas. While granulomas are pathologically diverse, their tissue-wide heterogeneity has not been spatially resolved at the single-cell level in human tissues. By spatially mapping individual immune cells in every lesion across entire tissue sections, we report that in addition to necrotizing granulomas, the human TB lung contains abundant non-necrotizing leukocyte aggregates surrounding areas of necrotizing tissue. These cellular lesions were more diverse in composition than necrotizing lesions and could be stratified into four general classes based on cellular composition and spatial distribution of B cells and macrophages. The cellular composition of non-necrotizing structures also correlates with their proximity to necrotizing lesions, indicating these are foci of distinct immune reactions adjacent to necrotizing granulomas. Together, we show that during TB, diseased lung tissue develops a histopathological superstructure comprising at least four different types of non-necrotizing cellular aggregates organized as satellites of necrotizing granulomas.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Granuloma/patología , Pulmón/patología , Macrófagos
13.
bioRxiv ; 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-36711606

RESUMEN

Mycobacterium tuberculosis (Mtb) infects cells in multiple lung myeloid cell subsets and causes chronic infection despite innate and adaptive immune responses. However, the mechanisms allowing Mtb to evade elimination are not fully understood. Here, using new methods, we determined that after T cell responses have developed, CD11clo monocyte-derived lung cells termed MNC1 (mononuclear cell subset 1), harbor more live Mtb compared to alveolar macrophages (AM), neutrophils, and less permissive CD11chi MNC2. Bulk RNA sequencing of sorted cells revealed that the lysosome biogenesis pathway is underexpressed in MNC1. Functional assays confirmed that Mtb-permissive MNC1 have less lysosome content, acidification, and proteolytic activity than AM, and less nuclear TFEB, a master regulator of lysosome biogenesis. Mtb infection does not drive lysosome deficiency in MNC1 in vivo. Instead, Mtb recruits MNC1 and MNC2 to the lungs for its spread from AM to these cell subsets as a virulence mechanism that requires the Mtb ESX-1 secretion system. The c-Abl tyrosine kinase inhibitor nilotinib activates TFEB and enhances lysosome function of primary macrophages in vitro and MNC1 and MNC2 in vivo, improving control of Mtb infection. Our results indicate that Mtb exploits lysosome-poor monocyte-derived cells for in vivo persistence, suggesting a potential target for host-directed tuberculosis therapy.

14.
Cell Rep Methods ; 2(8): 100267, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046626

RESUMEN

Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the "FluoroDOT assay," which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.


Asunto(s)
Citocinas , Tuberculosis , Humanos , Citocinas/metabolismo , Tuberculosis/metabolismo , Macrófagos , Linfocitos T/metabolismo
15.
PLoS One ; 17(8): e0271234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040958

RESUMEN

BACKGROUND: T cell activation (HLA-DR, CD-38), proliferation (KI-67), and functional (IFN-γ, TNF-α) markers have recently been shown to be useful in predicting and monitoring anti-TB responses in smear positive TB, but previous research did not characterize the activation and proliferation profiles after therapy of smear negative TB. METHODOLOGY: In this study, we used polychromatic flow cytometry to assess selected PPD-specific T cell markers using fresh PBMC of smear negative and positive pulmonary tuberculosis (PTB) patients, recruited from health facilities in Addis Ababa. RESULT: Levels of activation (HLA-DR, CD38) and proliferation (Ki-67) among total unstimulated CD4 T cells decreased significantly after therapy, particularly at month 6. Similarly, levels of PPD-specific T cell activation markers (HLA-DR, CD-38) were significantly lower in smear positive PTB patients following treatment, whereas a consistent decline in these markers was less apparent among smear negative PTB patients at the sixth month. CONCLUSION: After six months of standard anti-TB therapy, persistent levels of activation of HLA-DR and CD-38 from PPD specific CD4+T cells in this study could indicate that those markers have little value in monitoring and predicting anti-TB treatment response in smear negative pulmonary TB patients in Ethiopian context.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Ganglionar , Tuberculosis Pulmonar , Linfocitos T CD4-Positivos , Etiopía , Antígenos HLA-DR/metabolismo , Humanos , Antígeno Ki-67/metabolismo , Leucocitos Mononucleares/metabolismo , Mycobacterium tuberculosis/metabolismo , Tuberculina/metabolismo , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/metabolismo
16.
mBio ; 13(3): e0133222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35695454

RESUMEN

In the initial stage of respiratory infection, Mycobacterium tuberculosis traverses from alveolar macrophages to phenotypically diverse monocyte-derived phagocytes and neutrophils in the lung parenchyma. Here, we compare the in vivo kinetics of early bacterial growth and cell-to-cell spread of two strains of M. tuberculosis: a lineage 2 strain, 4334, and the widely studied lineage 4 strain H37Rv. Using flow cytometry, live cell sorting of phenotypic subsets, and quantitation of bacteria in cells of the distinct subsets, we found that 4334 induces less leukocyte influx into the lungs but demonstrates earlier population expansion and cell-to-cell spread. The earlier spread of 4334 to recruited cells, including monocyte-derived dendritic cells, is accompanied by earlier and greater magnitude of CD4+ T cell activation. The results provide evidence that strain-specific differences in interactions with lung leukocytes can shape adaptive immune responses in vivo. IMPORTANCE Tuberculosis is a leading infectious disease killer worldwide and is caused by Mycobacterium tuberculosis. After exposure to M. tuberculosis, outcomes range from apparent elimination to active disease. Early innate immune responses may contribute to differences in outcomes, yet it is not known how bacterial strains alter the early dynamics of innate immune and T cell responses. We infected mice with distinct strains of M. tuberculosis and discovered striking differences in innate cellular recruitment, cell-to-cell spread of bacteria in the lungs, and kinetics of initiation of antigen-specific CD4 T cell responses. We also found that M. tuberculosis can spread beyond alveolar macrophages even before a large influx of inflammatory cells. These results provide evidence that distinct strains of M. tuberculosis can exhibit differential kinetics in cell-to-cell spread which is not directly linked to early recruitment of phagocytes but is subsequently linked to adaptive immune responses.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Animales , Inmunidad Innata , Pulmón/microbiología , Macrófagos Alveolares , Ratones , Tuberculosis/microbiología
17.
Clin Exp Immunol ; 209(1): 99-108, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35552657

RESUMEN

Despite recent improvements in microbial detection, smear-negative TB remains a diagnostic challenge. In this study, we investigated the potential discriminatory role of polychromatic flow cytometry of M. tuberculosis antigen-specific T cells to discriminate smear-negative TB from health controls with or without latent TB infection, and non-TB respiratory illnesses in an endemic setting. A cross-sectional study was conducted on HIV negative, newly diagnosed smear-positive PTB (n = 34), smear-negative/GeneXpert negative PTB (n = 29) patients, non-TB patients with respiratory illness (n = 33) and apparently healthy latent TB infected (n = 30) or non-infected (n = 23) individuals. The expression of activation (HLA-DR, CD-38), proliferation (Ki-67), and functional (IFN-γ, TNF-α) T-cell markers using polychromatic flow cytometry was defined after stimulation with PPD antigens. Sputum samples were collected and processed from all patients for Mtb detection using a concentrated microscopy, LJ/MGIT culture, and RD9 typing by PCR. Our study showed CD4 T cells specific for PPD co-expressed activation/proliferation markers together with induced cytokines IFN-γ or TNF-α were present at substantially higher levels among patients with smear-positive and smear-negative pulmonary TB than among healthy controls and to a lesser extent among patients with non-TB illness. Our study conclude that smear-negative TB can be distinguished from non-TB respiratory illness and healthy controls with a flow cytometric assay for PPD-specific T cells co-expressing activation/proliferation markers and cytokines.


Asunto(s)
Tuberculosis Latente , Mycobacterium tuberculosis , Tuberculosis Pulmonar , Antígenos Bacterianos , Estudios Transversales , Citocinas/metabolismo , Humanos , Tuberculosis Latente/diagnóstico , Tuberculosis Latente/microbiología , Esputo/microbiología , Tuberculina , Tuberculosis Pulmonar/diagnóstico , Tuberculosis Pulmonar/microbiología , Factor de Necrosis Tumoral alfa
18.
Sci Transl Med ; 13(622): eabe7430, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34851691

RESUMEN

Repeated Plasmodium falciparum infections drive the development of clinical immunity to malaria in humans; however, the immunological mechanisms that underpin this response are only partially understood. We investigated the impact of repeated P. falciparum infections on human γδ T cells in the context of natural infection in Malian children and adults, as well as serial controlled human malaria infection (CHMI) of U.S. adults, some of whom became clinically immune to malaria. In contrast to the predominant Vδ2+ T cell population in malaria-naïve Australian individuals, clonally expanded cytotoxic Vδ1effector T cells were enriched in the γδ T cell compartment of Malian subjects. Malaria-naïve U.S. adults exposed to four sequential CHMIs defined the precise impact of P. falciparum on the γδ T cell repertoire. Specifically, innate-like Vδ2+ T cells exhibited an initial robust polyclonal response to P. falciparum infection that was not sustained with repeated infections, whereas Vδ1+ T cells increased in frequency with repeated infections. Moreover, repeated P. falciparum infection drove waves of clonal selection in the Vδ1+ T cell receptor repertoire that coincided with the differentiation of Vδ1naïve T cells into cytotoxic Vδ1effector T cells. Vδ1+ T cells of malaria-exposed Malian and U.S. individuals were licensed for reactivity to P. falciparum parasites in vitro. Together, our study indicates that repeated P. falciparum infection drives the clonal expansion of an adaptive γδ T cell repertoire and establishes a role for Vδ1+ T cells in the human immune response to malaria.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Adulto , Australia , Niño , Humanos , Malaria Falciparum/parasitología , Receptores de Antígenos de Linfocitos T gamma-delta , Linfocitos T
19.
Front Immunol ; 12: 735584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917073

RESUMEN

Common approaches for monitoring T cell responses are limited in their multiplexity and sensitivity. In contrast, deep sequencing of the T Cell Receptor (TCR) repertoire provides a global view that is limited only in terms of theoretical sensitivity due to the depth of available sampling; however, the assignment of antigen specificities within TCR repertoires has become a bottleneck. This study combines antigen-driven expansion, deep TCR sequencing, and a novel analysis framework to show that homologous 'Clusters of Expanded TCRs (CETs)' can be confidently identified without cell isolation, and assigned to antigen against a background of non-specific clones. We show that clonotypes within each CET respond to the same epitope, and that protein antigens stimulate multiple CETs reactive to constituent peptides. Finally, we demonstrate the personalized assignment of antigen-specificity to rare clones within fully-diverse uncultured repertoires. The method presented here may be used to monitor T cell responses to vaccination and immunotherapy with high fidelity.


Asunto(s)
Separación Celular/métodos , Técnicas Inmunológicas/métodos , Receptores de Antígenos de Linfocitos T/análisis , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T/inmunología , Humanos
20.
Cell ; 184(25): 6037-6051.e14, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34852237

RESUMEN

RNA viruses generate defective viral genomes (DVGs) that can interfere with replication of the parental wild-type virus. To examine their therapeutic potential, we created a DVG by deleting the capsid-coding region of poliovirus. Strikingly, intraperitoneal or intranasal administration of this genome, which we termed eTIP1, elicits an antiviral response, inhibits replication, and protects mice from several RNA viruses, including enteroviruses, influenza, and SARS-CoV-2. While eTIP1 replication following intranasal administration is limited to the nasal cavity, its antiviral action extends non-cell-autonomously to the lungs. eTIP1 broad-spectrum antiviral effects are mediated by both local and distal type I interferon responses. Importantly, while a single eTIP1 dose protects animals from SARS-CoV-2 infection, it also stimulates production of SARS-CoV-2 neutralizing antibodies that afford long-lasting protection from SARS-CoV-2 reinfection. Thus, eTIP1 is a safe and effective broad-spectrum antiviral generating short- and long-term protection against SARS-CoV-2 and other respiratory infections in animal models.


Asunto(s)
Proteínas de la Cápside/genética , Virus Interferentes Defectuosos/metabolismo , Replicación Viral/efectos de los fármacos , Administración Intranasal , Animales , Antivirales/farmacología , Anticuerpos ampliamente neutralizantes/inmunología , Anticuerpos ampliamente neutralizantes/farmacología , COVID-19 , Proteínas de la Cápside/metabolismo , Línea Celular , Virus Interferentes Defectuosos/patogenicidad , Modelos Animales de Enfermedad , Genoma Viral/genética , Humanos , Gripe Humana , Interferones/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Poliovirus/genética , Poliovirus/metabolismo , Infecciones del Sistema Respiratorio/virología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...