Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38958734

RESUMEN

Pertussis toxin (PT) is a virulent factor produced by Bordetella pertussis, the causative agent of whooping cough. PT exerts its pathogenic effects by ADP-ribosylating heterotrimeric G proteins, disrupting cellular signaling pathways. Here, we investigate the potential of two antiarrhythmic drugs, amiodarone and dronedarone, in mitigating PT-induced cellular intoxication. After binding to cells, PT is endocytosed, transported from the Golgi to the endoplasmic reticulum where the enzyme subunit PTS1 is released from the transport subunit of PT. PTS1 is translocated into the cytosol where it ADP-ribosylates inhibitory α-subunit of G-protein coupled receptors (Gαi). We showed that amiodarone and dronedarone protected CHO cells and human A549 cells from PT-intoxication by analyzing the ADP-ribosylation status of Gαi. Amiodarone had no effect on PT binding to cells or in vitro enzyme activity of PTS1 but reduced the signal of PTS1 in the cell suggesting that amiodarone interferes with intracellular transport of PTS1. Moreover, dronedarone mitigated the PT-mediated effect on cAMP signaling in a cell-based bioassay. Taken together, our findings underscore the inhibitory effects of amiodarone and dronedarone on PT-induced cellular intoxication, providing valuable insights into drug repurposing for infectious disease management.

2.
Toxins (Basel) ; 16(1)2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38251252

RESUMEN

Pertussis toxin (PT) is a bacterial AB5-toxin produced by Bordetella pertussis and a major molecular determinant of pertussis, also known as whooping cough, a highly contagious respiratory disease. In this study, we investigate the protective effects of the chaperonin TRiC/CCT inhibitor, HSF1A, against PT-induced cell intoxication. TRiC/CCT is a chaperonin complex that facilitates the correct folding of proteins, preventing misfolding and aggregation, and maintaining cellular protein homeostasis. Previous research has demonstrated the significance of TRiC/CCT in the functionality of the Clostridioides difficile TcdB AB-toxin. Our findings reveal that HSF1A effectively reduces the levels of ADP-ribosylated Gαi, the specific substrate of PT, in PT-treated cells, without interfering with enzyme activity in vitro or the cellular binding of PT. Additionally, our study uncovers a novel interaction between PTS1 and the chaperonin complex subunit CCT5, which correlates with reduced PTS1 signaling in cells upon HSF1A treatment. Importantly, HSF1A mitigates the adverse effects of PT on cAMP signaling in cellular systems. These results provide valuable insights into the mechanisms of PT uptake and suggest a promising starting point for the development of innovative therapeutic strategies to counteract pertussis toxin-mediated pathogenicity.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Toxina del Pertussis , Toxinas Bacterianas/toxicidad , Citosol , Anticuerpos Antibacterianos , Chaperonina con TCP-1
3.
Neurooncol Adv ; 5(1): vdad135, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38024243

RESUMEN

Background: Treatment of hematological malignancies with chimeric antigen receptor modified T cells (CART) is highly efficient, but often limited by an immune effector cell-associated neurotoxicity syndrome (ICANS). As conventional MRI is often unremarkable during ICANS, we aimed to examine whether resting-state functional MRI (rsfMRI) is suitable to depict and quantify brain network alterations underlying ICANS in the individual patient. Methods: The dysconnectivity index (DCI) based on rsfMRI was longitudinally assessed in systemic lymphoma patients and 1 melanoma patient during ICANS and before or after clinical resolution of ICANS. Results: Seven lymphoma patients and 1 melanoma patient (19-77 years; 2 female) were included. DCI was significantly increased during ICANS with normalization after recovery (P = .0039). Higher ICANS grades were significantly correlated with increased DCI scores (r = 0.7807; P = .0222). DCI increase was most prominent in the inferior frontal gyrus and the frontal operculum (ie, Broca's area) and in the posterior parts of the superior temporal gyrus and the temporoparietal junction (ie, Wernicke's area) of the language-dominant hemisphere, thus reflecting the major clinical symptoms of nonfluent dysphasia and dyspraxia. Conclusions: RsfMRI-based DCI might be suitable to directly quantify the severity of ICANS in individual patients undergoing CAR T-transfusion. Besides ICANS, DCI seems a promising diagnostic tool to quantify functional brain network alterations during encephalopathies of different etiologies, in general.

4.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37445740

RESUMEN

Whooping cough is a severe childhood disease, caused by the bacterium Bordetella pertussis, which releases pertussis toxin (PT) as a major virulence factor. Previously, we identified the human antimicrobial peptides α-defensin-1 and -5 as inhibitors of PT and demonstrated their capacity to inhibit the activity of the PT enzyme subunit PTS1. Here, the underlying mechanism of toxin inhibition was investigated in more detail, which is essential for developing the therapeutic potential of these peptides. Flow cytometry and immunocytochemistry revealed that α-defensin-5 strongly reduced PT binding to, and uptake into cells, whereas α-defensin-1 caused only a mild reduction. Conversely, α-defensin-1, but not α-defensin-5 was taken up into different cell lines and interacted with PTS1 inside cells, based on proximity ligation assay. In-silico modeling revealed specific interaction interfaces for α-defensin-1 with PTS1 and vice versa, unlike α-defensin-5. Dot blot experiments showed that α-defensin-1 binds to PTS1 and even stronger to its substrate protein Gαi in vitro. NADase activity of PTS1 in vitro was not inhibited by α-defensin-1 in the absence of Gαi. Taken together, these results suggest that α-defensin-1 inhibits PT mainly by inhibiting enzyme activity of PTS1, whereas α-defensin-5 mainly inhibits cellular uptake of PT. These findings will pave the way for optimization of α-defensins as novel therapeutics against whooping cough.


Asunto(s)
Tos Ferina , Humanos , Niño , Toxina del Pertussis/farmacología , Tos Ferina/microbiología , Bordetella pertussis , Proteínas , Línea Celular
5.
Toxins (Basel) ; 15(7)2023 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-37505681

RESUMEN

Bordetella pertussis toxin (PT) and Clostridium botulinum C2 toxin are ADP-ribosylating toxins causing severe diseases in humans and animals. They share a common translocation mechanism requiring the cellular chaperones Hsp90 and Hsp70, cyclophilins, and FK506-binding proteins to transport the toxins' enzyme subunits into the cytosol. Inhibitors of chaperone activities have been shown to reduce the amount of transported enzyme subunits into the cytosol of cells, thus protecting cells from intoxication by these toxins. Recently, domperidone, an approved dopamine receptor antagonist drug, was found to inhibit Hsp70 activity. Since Hsp70 is required for cellular toxin uptake, we hypothesized that domperidone also protects cells from intoxication with PT and C2. The inhibition of intoxication by domperidone was demonstrated by analyzing the ADP-ribosylation status of the toxins' specific substrates. Domperidone had no inhibitory effect on the receptor-binding or enzyme activity of the toxins, but it inhibited the pH-driven membrane translocation of the enzyme subunit of the C2 toxin and reduced the amount of PTS1 in cells. Taken together, our results indicate that domperidone is a potent inhibitor of PT and C2 toxins in cells and therefore might have therapeutic potential by repurposing domperidone to treat diseases caused by bacterial toxins that require Hsp70 for their cellular uptake.


Asunto(s)
Toxinas Bacterianas , Toxinas Botulínicas , Animales , Humanos , Bordetella pertussis/metabolismo , Domperidona/farmacología , Toxinas Botulínicas/toxicidad , Toxinas Bacterianas/metabolismo , Toxina del Pertussis , ADP Ribosa Transferasas/metabolismo
6.
Toxins (Basel) ; 15(6)2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37368685

RESUMEN

Clostridioides difficile infections cause severe symptoms ranging from diarrhea to pseudomembranous colitis due to the secretion of AB-toxins, TcdA and TcdB. Both toxins are taken up into cells through receptor-mediated endocytosis, autoproteolytic processing and translocation of their enzyme domains from acidified endosomes into the cytosol. The enzyme domains glucosylate small GTPases such as Rac1, thereby inhibiting processes such as actin cytoskeleton regulation. Here, we demonstrate that specific pharmacological inhibition of Hsp70 activity protected cells from TcdB intoxication. In particular, the established inhibitor VER-155008 and the antiemetic drug domperidone, which was found to be an Hsp70 inhibitor, reduced the number of cells with TcdB-induced intoxication morphology in HeLa, Vero and intestinal CaCo-2 cells. These drugs also decreased the intracellular glucosylation of Rac1 by TcdB. Domperidone did not inhibit TcdB binding to cells or enzymatic activity but did prevent membrane translocation of TcdB's glucosyltransferase domain into the cytosol. Domperidone also protected cells from intoxication with TcdA as well as CDT toxin produced by hypervirulent strains of Clostridioides difficile. Our results reveal Hsp70 requirement as a new aspect of the cellular uptake mechanism of TcdB and identified Hsp70 as a novel drug target for potential therapeutic strategies required to combat severe Clostridioides difficile infections.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Humanos , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Domperidona/farmacología , Domperidona/metabolismo , Células CACO-2 , Proteínas Bacterianas/metabolismo , Enterotoxinas/toxicidad , Enterotoxinas/metabolismo
7.
Front Cell Infect Microbiol ; 12: 938015, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992160

RESUMEN

Bacterial AB-type toxins are proteins released by the producing bacteria and are the causative agents for several severe diseases including cholera, whooping cough, diphtheria or enteric diseases. Their unique AB-type structure enables their uptake into mammalian cells via sophisticated mechanisms exploiting cellular uptake and transport pathways. The binding/translocation B-subunit facilitates binding of the toxin to a specific receptor on the cell surface. This is followed by receptor-mediated endocytosis. Then the enzymatically active A-subunit either escapes from endosomes in a pH-dependent manner or the toxin is further transported through the Golgi to the endoplasmic reticulum from where the A-subunit translocates into the cytosol. In the cytosol, the A-subunits enzymatically modify a specific substrate which leads to cellular reactions resulting in clinical symptoms that can be life-threatening. Both intracellular uptake routes require the A-subunit to unfold to either fit through a pore formed by the B-subunit into the endosomal membrane or to be recognized by the ER-associated degradation pathway. This led to the hypothesis that folding helper enzymes such as chaperones and peptidyl-prolyl cis/trans isomerases are required to assist the translocation of the A-subunit into the cytosol and/or facilitate their refolding into an enzymatically active conformation. This review article gives an overview about the role of heat shock proteins Hsp90 and Hsp70 as well as of peptidyl-prolyl cis/trans isomerases of the cyclophilin and FK506 binding protein families during uptake of bacterial AB-type toxins with a focus on clostridial binary toxins Clostridium botulinum C2 toxin, Clostridium perfringens iota toxin, Clostridioides difficile CDT toxin, as well as diphtheria toxin, pertussis toxin and cholera toxin.


Asunto(s)
Toxinas Botulínicas , Animales , Transporte Biológico , Toxinas Botulínicas/metabolismo , Ciclofilinas/metabolismo , Proteínas HSP90 de Choque Térmico , Mamíferos/metabolismo , Transporte de Proteínas
8.
PLoS One ; 17(7): e0272365, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35905135

RESUMEN

This study investigates visuospatial memory in patients with unilateral lesions of the temporal lobe and the hippocampus resulting from surgery to treat drug-resistant epilepsy. To detect impairments of visuospatial memory in these individuals, a memory test should be specific to episodic memory, the type of memory in which the hippocampus is crucially involved. However, most known visuospatial memory tests do not focus on episodic memory. We hypothesized that a new sequential visuospatial memory test, which has been previously developed and applied only in healthy subjects, might be suitable to fill this gap. The test requires the subject to reproduce a memorized sequence of target locations in ordered recall by typing on a blank graphics tablet. The length of the memorized sequence extended successively after repeated presentation of a sequence of 20 target positions. The test was done twice on day one and again after one week. Visual working memory was tested with the Corsi block-tapping task. The performance in the new test was also related to the performance of the patients in the standard test battery of the neuropsychological examination in the clinical context. Thirteen patients and 14 controls participated. Patients showed reduced learning speed in the new sequential visuospatial memory task. Right-sided lesions induced stronger impairments than left-sided lesions. After one week, retention was reduced in the patients with left-sided lesions. The performance of the patients in commonly used tests of the neuropsychological standard battery did not differ compared to healthy subjects, whereas the new test allowed discrimination between patients and controls at a high correct-decision rate of 0.89. The Corsi block-span of the patients was slightly shorter than that of the controls. The results suggest that the new test provides a specific investigation of episodic visuospatial memory. Hemispheric asymmetries were consistent with the general hypothesis of right hemispheric dominance in visuospatial processing.


Asunto(s)
Epilepsia del Lóbulo Temporal , Lóbulo Temporal , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Humanos , Memoria a Corto Plazo , Pruebas Neuropsicológicas , Lóbulo Temporal/patología
9.
Toxins (Basel) ; 14(3)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324684

RESUMEN

Pertussis, also known as whooping cough, is a respiratory disease caused by infection with Bordetella pertussis, which releases several virulence factors, including the AB-type pertussis toxin (PT). The characteristic symptom is severe, long-lasting paroxysmal coughing. Especially in newborns and infants, pertussis symptoms, such as leukocytosis, can become life-threatening. Despite an available vaccination, increasing case numbers have been reported worldwide, including Western countries such as Germany and the USA. Antibiotic treatment is available and important to prevent further transmission. However, antibiotics only reduce symptoms if administered in early stages, which rarely occurs due to a late diagnosis. Thus, no causative treatments against symptoms of whooping cough are currently available. The AB-type protein toxin PT is a main virulence factor and consists of a binding subunit that facilitates transport of an enzyme subunit into the cytosol of target cells. There, the enzyme subunit ADP-ribosylates inhibitory α-subunits of G-protein coupled receptors resulting in disturbed cAMP signaling. As an important virulence factor associated with severe symptoms, such as leukocytosis, and poor outcomes, PT represents an attractive drug target to develop novel therapeutic strategies. In this review, chaperone inhibitors, human peptides, small molecule inhibitors, and humanized antibodies are discussed as novel strategies to inhibit PT.


Asunto(s)
Tos Ferina , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bordetella pertussis/metabolismo , Humanos , Lactante , Recién Nacido , Leucocitosis , Péptidos/metabolismo , Toxina del Pertussis/metabolismo , Tos Ferina/diagnóstico , Tos Ferina/tratamiento farmacológico , Tos Ferina/prevención & control
10.
Toxins (Basel) ; 13(7)2021 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-34357952

RESUMEN

Bordetella pertussis causes the severe childhood disease whooping cough, by releasing several toxins, including pertussis toxin (PT) as a major virulence factor. PT is an AB5-type toxin, and consists of the enzymatic A-subunit PTS1 and five B-subunits, which facilitate binding to cells and transport of PTS1 into the cytosol. PTS1 ADP-ribosylates α-subunits of inhibitory G-proteins (Gαi) in the cytosol, which leads to disturbed cAMP signaling. Since PT is crucial for causing severe courses of disease, our aim is to identify new inhibitors against PT, to provide starting points for novel therapeutic approaches. Here, we investigated the effect of human antimicrobial peptides of the defensin family on PT. We demonstrated that PTS1 enzyme activity in vitro was inhibited by α-defensin-1 and -5, but not ß-defensin-1. The amount of ADP-ribosylated Gαi was significantly reduced in PT-treated cells, in the presence of α-defensin-1 and -5. Moreover, both α-defensins decreased PT-mediated effects on cAMP signaling in the living cell-based interference in the Gαi-mediated signal transduction (iGIST) assay. Taken together, we identified the human peptides α-defensin-1 and -5 as inhibitors of PT activity, suggesting that these human peptides bear potential for developing novel therapeutic strategies against whooping cough.


Asunto(s)
Antiinfecciosos/farmacología , Toxina del Pertussis/antagonistas & inhibidores , alfa-Defensinas/farmacología , Animales , Péptidos Antimicrobianos , Bordetella pertussis/metabolismo , Niño , Humanos , Toxina del Pertussis/metabolismo , Factores de Virulencia de Bordetella , Tos Ferina
11.
Brain Topogr ; 34(5): 698-707, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34401999

RESUMEN

To study the neuroanatomical correlate of involuntary unilateral blinking in humans, using the example of patients with focal epilepsy. Patients with drug resistant focal epilepsy undergoing presurgical evaluation with stereotactically implanted EEG-electrodes (sEEG) were recruited from the local epilepsy monitoring unit. Only patients showing ictal unilateral blinking or unilateral blinking elicited by direct electrical stimulation were included (n = 16). MRI and CT data were used for visualization of the electrode positions. In two patients, probabilistic tractography with seeding from the respective electrodes was additionally performed. Three main findings were made: (1) involuntary unilateral blinking was associated with activation of the anterior temporal region, (2) tractography showed widespread projections to the ipsilateral frontal, pericentral, occipital, limbic and cerebellar regions and (3) blinking was observed predominantly in female patients with temporal lobe epilepsies. Unilateral blinking was found to be associated with an ipsilateral activation of the anterior temporal region. We suggest that the identified network is not part of the primary blinking control but might have modulating influence on ipsilateral blinking by integrating contextual information.


Asunto(s)
Epilepsia Refractaria , Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Parpadeo , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Electroencefalografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Femenino , Humanos
12.
Toxins (Basel) ; 13(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071730

RESUMEN

The clinically highly relevant Clostridioides (C.) difficile releases several AB-type toxins that cause diseases such as diarrhea and pseudomembranous colitis. In addition to the main virulence factors Rho/Ras-glycosylating toxins TcdA and TcdB, hypervirulent strains produce the binary AB-type toxin CDT. CDT consists of two separate proteins. The binding/translocation B-component CDTb facilitates uptake and translocation of the enzyme A-component CDTa to the cytosol of cells. Here, CDTa ADP-ribosylates G-actin, resulting in depolymerization of the actin cytoskeleton. We previously showed that CDTb exhibits cytotoxicity in the absence of CDTa, which is most likely due to pore formation in the cytoplasmic membrane. Here, we further investigated this cytotoxic effect and showed that CDTb impairs CaCo-2 cell viability and leads to redistribution of F-actin without affecting tubulin structures. CDTb was detected at the cytoplasmic membrane in addition to its endosomal localization if CDTb was applied alone. Chloroquine and several of its derivatives, which were previously identified as toxin pore blockers, inhibited intoxication of Vero, HCT116, and CaCo-2 cells by CDTb and CDTb pores in vitro. These results further strengthen pore formation by CDTb in the cytoplasmic membrane as the underlying cytotoxic mechanism and identify pharmacological pore blockers as potent inhibitors of cytotoxicity induced by CDTb and CDTa plus CDTb.


Asunto(s)
Toxinas Bacterianas/antagonistas & inhibidores , Clostridioides difficile/patogenicidad , Actinas/metabolismo , Animales , Toxinas Bacterianas/farmacología , Células CACO-2 , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Cloroquina/farmacología , Humanos , Células Vero
13.
Sci Rep ; 11(1): 5429, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686161

RESUMEN

Whooping cough is caused by Bordetella pertussis that releases pertussis toxin (PT) which comprises enzyme A-subunit PTS1 and binding/transport B-subunit. After receptor-mediated endocytosis, PT reaches the endoplasmic reticulum from where unfolded PTS1 is transported to the cytosol. PTS1 ADP-ribosylates G-protein α-subunits resulting in increased cAMP signaling. Here, a role of target cell chaperones Hsp90, Hsp70, cyclophilins and FK506-binding proteins for cytosolic PTS1-uptake is demonstrated. PTS1 specifically and directly interacts with chaperones in vitro and in cells. Specific pharmacological chaperone inhibition protects CHO-K1, human primary airway basal cells and a fully differentiated airway epithelium from PT-intoxication by reducing intracellular PTS1-amounts without affecting cell binding or enzyme activity. PT is internalized by human airway epithelium secretory but not ciliated cells and leads to increase of apical surface liquid. Cyclophilin-inhibitors reduced leukocytosis in infant mouse model of pertussis, indicating their promising potential for developing novel therapeutic strategies against whooping cough.


Asunto(s)
Bordetella pertussis/enzimología , Sistemas de Liberación de Medicamentos , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Leucocitosis , Chaperonas Moleculares , Toxina del Pertussis/toxicidad , Animales , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidad , Células CHO , Cricetulus , Células Epiteliales/microbiología , Células HEK293 , Humanos , Leucocitosis/inducido químicamente , Leucocitosis/tratamiento farmacológico , Leucocitosis/metabolismo , Ratones , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1863(6): 183603, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33689753

RESUMEN

Clostridioides (C.) difficile is clinically highly relevant and produces several AB-type protein toxins, which are the causative agents for C. difficile-associated diarrhea and pseudomembranous colitis. Treatment with antibiotics can lead to C. difficile overgrowth in the gut of patients due to the disturbed microbiota. C. difficile releases large Rho/Ras-GTPase glucosylating toxins TcdA and TcdB, which are considered as the major virulence factors for C. difficile-associated diseases. In addition to TcdA and TcdB, C. difficile strains isolated from severe cases of colitis produce a third toxin called CDT. CDT is a member of the family of clostridial binary actin ADP-ribosylating toxins and consists of two separate protein components. The B-component, CDTb, binds to the receptor and forms a complex with and facilitates transport and translocation of the enzymatically active A-component, CDTa, into the cytosol of target cells by forming trans-membrane pores through which CDTa translocates. In the cytosol, CDTa ADP-ribosylates G-actin causing depolymerization of the actin cytoskeleton and, eventually, cell death. In the present study, we report that CDTb exhibits a cytotoxic effect in the absence of CDTa. We show that CDTb causes cell rounding and impairs cell viability and the epithelial integrity of CaCo-2 monolayers in the absence of CDTa. CDTb-induced cell rounding depended on the presence of LSR, the specific cellular receptor of CDT. The isolated receptor-binding domain of CDTb was not sufficient to cause cell rounding. CDTb-induced cell rounding was inhibited by enzymatically inactive CDTa or a pore-blocker, implying that CDTb pores in cytoplasmic membranes contribute to cytotoxicity.


Asunto(s)
ADP Ribosa Transferasas/farmacología , Proteínas Bacterianas/farmacología , Clostridioides difficile/metabolismo , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Humanos , Células Vero
15.
Naunyn Schmiedebergs Arch Pharmacol ; 394(5): 941-954, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33284399

RESUMEN

Binary enterotoxins Clostridioides difficile CDT toxin, Clostridium botulinum C2 toxin, and Clostridium perfringens iota toxin consist of two separate protein components. The B-components facilitate receptor-mediated uptake into mammalian cells and form pores into endosomal membranes through which the enzymatic active A-components translocate into the cytosol. Here, the A-components ADP-ribosylate G-actin which leads to F-actin depolymerization followed by rounding of cells which causes clinical symptoms. The protein folding helper enzymes Hsp90, Hsp70, and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506 binding protein (FKBP) families are required for translocation of A-components of CDT, C2, and iota toxins from endosomes to the cytosol. Here, we demonstrated that simultaneous inhibition of these folding helpers by specific pharmacological inhibitors protects mammalian, including human, cells from intoxication with CDT, C2, and iota toxins, and that the inhibitor combination displayed an enhanced effect compared to application of the individual inhibitors. Moreover, combination of inhibitors allowed a concentration reduction of the individual compounds as well as decreasing of the incubation time with inhibitors to achieve a protective effect. These results potentially have implications for possible future therapeutic applications to relieve clinical symptoms caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs for their membrane translocation into the cytosol of target cells.


Asunto(s)
ADP Ribosa Transferasas/toxicidad , Toxinas Bacterianas/toxicidad , Toxinas Botulínicas/toxicidad , Enterotoxinas/toxicidad , Animales , Células CACO-2 , Chlorocebus aethiops , Ciclofilinas/antagonistas & inhibidores , Ciclofilinas/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Proteínas de Unión a Tacrolimus/antagonistas & inhibidores , Proteínas de Unión a Tacrolimus/metabolismo , Células Vero
16.
Acta Neurol Scand ; 143(3): 248-255, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33011970

RESUMEN

OBJECTIVE: To assess hemispheric differences in the duration of focal onset seizures and its association with clinical and demographic factors. METHODS: A retrospective analysis was performed on adult patients with drug-resistant unifocal epilepsy, who underwent intracranial EEG recording between 01/2006 and 06/2016. Seizure duration was determined based on the subdural and/or stereo-EEG (sEEG) recordings. Hemispheric differences in seizure duration were statistically evaluated with regard to clinical and demographic data. RESULTS: In total, 69 patients and 654 focal onset seizures were included. The duration of seizures with left-hemispheric onset (n = 297) was by trend longer (91.88 ± 93.92 s) than of right-hemispheric seizures (n = 357; 71.03 ± 68.53 s; p = .193). Significant hemispheric differences in seizures duration were found in temporal lobe seizures (n = 225; p = .013), especially those with automotor manifestation (n = 156; p = .045). A prolonged duration was also found for left-hemispheric onset seizures with secondary generalized commencing during waking state (n = 225; p = .034), but not during sleep. A similar hemispheric difference in seizure duration was found in female patients (p = .040), but not in men. CONCLUSIONS: Hemispheric differences in seizure duration were revealed with significantly longer durations in case of left-hemispheric seizure onset. The observed differences in seizure duration might result from brain asymmetry and add new aspects to the understanding of seizure propagation and termination.


Asunto(s)
Encéfalo/fisiopatología , Epilepsia Refractaria/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Convulsiones/fisiopatología , Adulto , Electroencefalografía , Femenino , Lateralidad Funcional/fisiología , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo
17.
Front Pharmacol ; 9: 1287, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30483129

RESUMEN

The Clostridium botulinum C2 toxin is an exotoxin causing severe enterotoxic symptoms. The C2 toxin consists of the binding/translocation component C2II, and the enzymatic active component C2I. After proteolytic activation, C2IIa forms heptamers that bind C2I. The C2IIa/C2I complex is taken up into mammalian target cells via receptor-mediated endocytosis. Acidification of endosomes leads to conformational changes in both components. C2IIa heptamers form a pore into the endosomal membrane, and C2I becomes unfolded and translocates through the narrow C2IIa pores into the cytosol of the cell. Here, C2I covalently transfers an ADP-ribose moiety from its co-substrate NAD+ onto G-actin, which leads to depolymerization of F-actin resulting in rounding up of adherent cells. Translocation of C2I into the cytosol depends on the activity of the chaperones Hsp90 and Hsp70 and peptidyl-prolyl cis/trans isomerases of the cyclophilin (Cyp) and FK506-binding protein (FKBP) families. Here, we demonstrated that C2I is detected in close proximity with Hsp90, Cyp40, and FKBP51 in cells, indicating their interaction. This interaction was dependent on the concentration of C2 toxin and detected in mammalian Vero and human HeLa cells. Moreover, the present study reveals that combination of radicicol, VER-155008, cyclosporine A, and FK506, which are specific pharmacological inhibitors of Hsp90, Hsp70, Cyps, and FKBPs, respectively, resulted in a stronger inhibition of intoxication of cells with C2 toxin compared to application of the single inhibitors. Thus, the combination of inhibitors showed enhanced protection of cells against the cytotoxic effects of C2 toxin. Cell viability was not significantly impaired by application of the inhibitor combination. Moreover, we confirmed that the combination of radicicol, VER-155008, CsA, and FK506 in particular inhibit the membrane translocation step of C2I into the cytosol whereas receptor binding and enzyme activity of the toxin were not affected. Our findings further characterize the mode of action of Hsp90, Hsp70, Cyps, and FKBPs during membrane translocation of bacterial toxins and furthermore supply starting points for developing of novel therapeutic strategies against diseases caused by bacterial toxins that depend on Hsp90, Hsp70, Cyps, and FKBPs.

18.
Epileptic Disord ; 20(5): 418-422, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30361182

RESUMEN

Pure ictal non-speech vocalisation occurs in frontal and temporal lobe epilepsies. Electrical stimulation of supplementary motor areas is reported to evoke vocalisation in selected patients. Here, we report a patient with focal epilepsy of the left anterior insula who had isolated monotonous vocalisation elicited by electrical stimulation of the left superior frontal gyrus. Quantitative analysis of audio signals was performed and compared with a former patient with left frontal lobe epilepsy who had pure ictal vocalisation. Both patients showed a comparable reduction in frequency variation indicating a monotonous voice. [Published with video sequences on www.epilepticdisorders.com].


Asunto(s)
Epilepsia del Lóbulo Frontal/diagnóstico por imagen , Epilepsia del Lóbulo Frontal/fisiopatología , Voz/fisiología , Adulto , Imagen de Difusión Tensora , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/fisiopatología , Estimulación Eléctrica , Electroencefalografía , Femenino , Humanos
19.
Toxins (Basel) ; 10(5)2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723951

RESUMEN

The Bordetella pertussis toxin (PT) is one important virulence factor causing the severe childhood disease whooping cough which still accounted for approximately 63,000 deaths worldwide in children in 2013. PT consists of PTS1, the enzymatically active (A) subunit and a non-covalently linked pentameric binding/transport (B) subunit. After endocytosis, PT takes a retrograde route to the endoplasmic reticulum (ER), where PTS1 is released into the cytosol. In the cytosol, PTS1 ADP-ribosylates inhibitory alpha subunits of trimeric GTP-binding proteins (Giα) leading to increased cAMP levels and disturbed signalling. Here, we show that the cyclophilin (Cyp) isoforms CypA and Cyp40 directly interact with PTS1 in vitro and that Cyp inhibitors cyclosporine A (CsA) and its tailored non-immunosuppressive derivative VK112 both inhibit intoxication of CHO-K1 cells with PT, as analysed in a morphology-based assay. Moreover, in cells treated with PT in the presence of CsA, the amount of ADP-ribosylated Giα was significantly reduced and less PTS1 was detected in the cytosol compared to cells treated with PT only. The results suggest that the uptake of PTS1 into the cytosol requires Cyps. Therefore, CsA/VK112 represent promising candidates for novel therapeutic strategies acting on the toxin level to prevent the severe, life-threatening symptoms caused by PT.


Asunto(s)
Ciclofilinas/antagonistas & inhibidores , Ciclosporina/farmacología , Toxina del Pertussis/toxicidad , Animales , Bordetella pertussis , Células CHO , Cricetulus , Ciclofilinas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas Recombinantes/metabolismo
20.
Sci Rep ; 7(1): 2724, 2017 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-28578412

RESUMEN

Binary enterotoxins Clostridium (C.) botulinum C2 toxin, C. perfringens iota toxin and C. difficile toxin CDT are composed of a transport (B) and a separate non-linked enzyme (A) component. Their B-components mediate endocytic uptake into mammalian cells and subsequently transport of the A-components from acidic endosomes into the cytosol, where the latter ADP-ribosylate G-actin resulting in cell rounding and cell death causing clinical symptoms. Protein folding enzymes, including Hsp90 and peptidyl-prolyl cis/trans isomerases facilitate transport of the A-components across endosomal membranes. Here, we identified Hsp70 as a novel host cell factor specifically interacting with A-components of C2, iota and CDT toxins to facilitate their transport into the cell cytosol. Pharmacological Hsp70-inhibition specifically prevented pH-dependent trans-membrane transport of A-components into the cytosol thereby protecting living cells and stem cell-derived human miniguts from intoxication. Thus, Hsp70-inhibition might lead to development of novel therapeutic strategies to treat diseases associated with bacterial ADP-ribosylating toxins.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Bacterias/metabolismo , Enterotoxinas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Chlorocebus aethiops , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Humanos , Concentración de Iones de Hidrógeno , Unión Proteica , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...