Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Mater ; 36(4): 1908-1918, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533450

RESUMEN

AMX Zintl compounds, crystallizing in several closely related layered structures, have recently garnered attention due to their exciting thermoelectric properties. In this study, we show that orthorhombic CaAgSb can be alloyed with hexagonal CaAgBi to achieve a solid solution with a structural transformation at x ∼ 0.8. This transition can be seen as a switch from three-dimensional (3D) to two-dimensional (2D) covalent bonding in which the interlayer M-X bond distances expand while the in-plane M-X distances contract. Measurements of the elastic moduli reveal that CaAgSb1-xBix becomes softer with increasing Bi content, with the exception of a steplike 10% stiffening observed at the 3D-to-2D phase transition. Thermoelectric transport measurements reveal promising Hall mobility and a peak zT of 0.47 at 620 K for intrinsic CaAgSb, which is higher than those in previous reports for unmodified CaAgSb. However, alloying with Bi was found to increase the hole concentration beyond the optimal value, effectively lowering the zT. Interestingly, analysis of the thermal conductivity and electrical conductivity suggests that the Bi-rich alloys are low Lorenz-number (L) materials, with estimated values of L well below the nondegenerate limit of L = 1.5 × 10-8 W Ω K-2, in spite of the metallic-like transport properties. A low Lorenz number decouples lattice and electronic thermal conductivities, providing greater flexibility for enhancing thermoelectric properties.

2.
Adv Mater ; 36(16): e2310537, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38279784

RESUMEN

In superionic crystals, liquid-like ionic diffusivities often come hand-in-hand with ultra-low thermal conductivity and soft vibrational dynamics. However, generalized relationships between ion transport and vibrational dynamics remain elusive due to the diversity of superionic materials and complex underlying mechanisms. Here, the links between vibrational dynamics and ion transport in close-packed lithium halide ion conductor Li3YCl6 (LYC) are examined using a suite of atomistic first-principles methods. It is shown that configurational disorder, lattice anharmonicity, and coupled host-mobile ion vibrational dynamics together induce a transition to the superionic state. Statistical correlations between ionic hops and activation of the distribution of vibrational modes are found. However, typical phenomena associated with superionic conductors such as selective breakdown of zone-boundary soft phonons, or long wavelength transverse acoustic modes as in the 'phonon-liquid-electron crystal' concept, are not present. Instead, anharmonic zone-boundary modes aiding Li diffusion are found to broaden and soften selectively but persist across the superionic transition. These anharmonic modes couple Li ion motion with the vibrations of the flexible close-packed anion framework, which remains stable and facilitates ionic hopping. The results provide insights into how configurational disorder and soft-yet-resilient vibrational modes enable ionic hopping, particularly in 3D close-packed crystals.

3.
ACS Nano ; 18(5): 4205-4215, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38266246

RESUMEN

Strain engineering in two-dimensional (2D) materials is a powerful but difficult to control approach to tailor material properties. Across applications, there is a need for device-compatible techniques to design strain within 2D materials. This work explores how process-induced strain engineering, commonly used by the semiconductor industry to enhance transistor performance, can be used to pattern complex strain profiles in monolayer MoS2 and 2D heterostructures. A traction-separation model is identified to predict strain profiles and extract the interfacial traction coefficient of 1.3 ± 0.7 MPa/µm and the damage initiation threshold of 16 ± 5 nm. This work demonstrates the utility to (1) spatially pattern the optical band gap with a tuning rate of 91 ± 1 meV/% strain and (2) induce interlayer heterostrain in MoS2-WSe2 heterobilayers. These results provide a CMOS-compatible approach to design complex strain patterns in 2D materials with important applications in 2D heterogeneous integration into CMOS technologies, moiré engineering, and confining quantum systems.

4.
ACS Nano ; 17(8): 7881-7888, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37057994

RESUMEN

The low bending stiffness of atomic membranes from van der Waals ferroelectrics such as α-In2Se3 allow access to a regime of strong coupling between electrical polarization and mechanical deformation at extremely high strain gradients and nanoscale curvatures. Here, we investigate the atomic structure and polarization at bends in multilayer α-In2Se3 at high curvatures down to 0.3 nm utilizing atomic-resolution scanning transmission electron microscopy, density functional theory, and piezoelectric force microscopy. We find that bent α-In2Se3 produces two classes of structures: arcs, which form at bending angles below ∼33°, and kinks, which form above ∼33°. While arcs preserve the original polarization of the material, kinks contain ferroelectric domain walls that reverse the out-of-plane polarization. We show that these kinks stabilize ferroelectric domains that can be extremely small, down to 2 atoms or ∼4 Å wide at their narrowest point. Using DFT modeling and the theory of geometrically necessary disclinations, we derive conditions for the formation of kink-induced ferroelectric domain boundaries. Finally, we demonstrate direct control over the ferroelectric polarization using templated substrates to induce patterned micro- and nanoscale ferroelectric domains with alternating polarization. Our results describe the electromechanical coupling of α-In2Se3 at the highest limits of curvature and demonstrate a strategy for nanoscale ferroelectric domain patterning.

5.
Nat Mater ; 22(1): 92-99, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36280702

RESUMEN

Electrochemical phase transformation in ion-insertion crystalline electrodes is accompanied by compositional and structural changes, including the microstructural development of oriented phase domains. Previous studies have identified prevailingly transformation heterogeneities associated with diffusion- or reaction-limited mechanisms. In comparison, transformation-induced domains and their microstructure resulting from the loss of symmetry elements remain unexplored, despite their general importance in alloys and ceramics. Here, we map the formation of oriented phase domains and the development of strain gradient quantitatively during the electrochemical ion-insertion process. A collocated four-dimensional scanning transmission electron microscopy and electron energy loss spectroscopy approach, coupled with data mining, enables the study. Results show that in our model system of cubic spinel MnO2 nanoparticles their phase transformation upon Mg2+ insertion leads to the formation of domains of similar chemical identity but different orientations at nanometre length scale, following the nucleation, growth and coalescence process. Electrolytes have a substantial impact on the transformation microstructure ('island' versus 'archipelago'). Further, large strain gradients build up from the development of phase domains across their boundaries with high impact on the chemical diffusion coefficient by a factor of ten or more. Our findings thus provide critical insights into the microstructure formation mechanism and its impact on the ion-insertion process, suggesting new rules of transformation structure control for energy storage materials.

6.
Artículo en Inglés | MEDLINE | ID: mdl-35849641

RESUMEN

Initial synthesis of semiconducting oxides leaves behind poorly controlled concentrations of unwanted atomic-scale defects that influence numerous electrical, optical, and reactivity properties. We have discovered through self-diffusion measurements and first-principles computations that poison-free oxide surfaces inject interstitial oxygen atoms into the crystalline solid when simply contacted with liquid water near room temperature. These interstitials diffuse quickly to depths of 20 nm-2 µm and are likely to eliminate prominent classes of unwanted defects or neutralize their action. The mild conditions of operation access a regime for oxide fabrication that relaxes important thermodynamic constraints that hamper defect regulation by conventional methods at higher temperatures. The surface-based approach appears well-suited for use with nanoparticles, porous oxides, and thin films for applications in advanced electronics, renewable energy storage, photocatalysis, and photoelectrochemistry.

7.
Phys Chem Chem Phys ; 23(30): 16423-16435, 2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34318811

RESUMEN

Oxygen vacancies (VO) influence many properties of ZnO in semiconductor devices, yet synthesis methods leave behind variable and unpredictable VO concentrations. Oxygen interstitials (Oi) move far more rapidly, so post-synthesis introduction of Oi to control the VO concentration would be desirable. Free surfaces offer such an introduction mechanism if they are free of poisoning foreign adsorbates. Here, isotopic exchange experiments between nonpolar ZnO(101[combining macron]0) and O2 gas, together with mesoscale modeling and first-principles calculations, point to an activation barrier for injection only 0.1-0.2 eV higher than for bulk site hopping. The modest barrier for hopping in turn enables diffusion lengths of tens to hundreds of nanometers only slightly above room temperature, which should facilitate defect engineering under very modest conditions. In addition, low hopping barriers coupled with statistical considerations lead to important qualitative manifestations in diffusion via an interstitialcy mechanism that does not occur for vacancies.

8.
Nat Mater ; 20(10): 1392-1400, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34017118

RESUMEN

Interfaces have crucial, but still poorly understood, roles in the performance of secondary solid-state batteries. Here, using crystallographically oriented and highly faceted thick cathodes, we directly assess the impact of cathode crystallography and morphology on the long-term performance of solid-state batteries. The controlled interface crystallography, area and microstructure of these cathodes enables an understanding of interface instabilities unknown (hidden) in conventional thin-film and composite solid-state electrodes. A generic and direct correlation between cell performance and interface stability is revealed for a variety of both lithium- and sodium-based cathodes and solid electrolytes. Our findings highlight that minimizing interfacial area, rather than its expansion as is the case in conventional composite cathodes, is key to both understanding the nature of interface instabilities and improving cell performance. Our findings also point to the use of dense and thick cathodes as a way of increasing the energy density and stability of solid-state batteries.

9.
Adv Mater ; 33(20): e2100977, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33829572

RESUMEN

Solid-gas interactions at electrode surfaces determine the efficiency of solid-oxide fuel cells and electrolyzers. Here, the correlation between surface-gas kinetics and the crystal orientation of perovskite electrodes is studied in the model system La0.8 Sr0.2 Co0.2 Fe0.8 O3 . The gas-exchange kinetics are characterized by synthesizing epitaxial half-cell geometries where three single-variant surfaces are produced [i.e., La0.8 Sr0.2 Co0.2 Fe0.8 O3 /La0.9 Sr0.1 Ga0.95 Mg0.05 O3-δ /SrRuO3 /SrTiO3 (001), (110), and (111)]. Electrochemical impedance spectroscopy and electrical conductivity relaxation measurements reveal a strong surface-orientation dependency of the gas-exchange kinetics, wherein (111)-oriented surfaces exhibit an activity >3-times higher as compared to (001)-oriented surfaces. Oxygen partial pressure ( p O 2 )-dependent electrochemical impedance spectroscopy studies reveal that while the three surfaces have different gas-exchange kinetics, the reaction mechanisms and rate-limiting steps are the same (i.e., charge-transfer to the diatomic oxygen species). First-principles calculations suggest that the formation energy of vacancies and adsorption at the various surfaces is different and influenced by the surface polarity. Finally, synchrotron-based, ambient-pressure X-ray spectroscopies reveal distinct electronic changes and surface chemistry among the different surface orientations. Taken together, thin-film epitaxy provides an efficient approach to control and understand the electrode reactivity ultimately demonstrating that the (111)-surface exhibits a high density of active surface sites which leads to higher activity.

10.
J Am Chem Soc ; 143(6): 2567-2580, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33534568

RESUMEN

Photoelectrochemical (PEC) device efficiency depends heavily on the energetics and band alignment of the semiconductor|overlayer junction. Exerting energetic control over these junctions via molecular functionalization is an extremely attractive strategy. Herein we report a study of the structure-function relationship between chemically functionalized pSi(111) and the resulting solar fuels performance. Specifically, we highlight the interplay of chemical structure and electronic coupling between the attached molecule and the underlying semiconductor. Covalent attachment of aryl surface modifiers (phenyl, Ph; nitrophenyl, PhNO2; anthracene, Anth; and nitroanthracene, AnthNO2) resulted in high-fidelity surfaces with low defect densities (S < 50 cm/s). Electrochemical characterization of these surfaces in contact with methyl viologen resulted in systematically shifted band edges (up to 0.99 V barrier height) and correspondingly high photoelectrochemical performance (Voc up to 0.43 V vs MV2+) consistent with the introduction of a positive interfacial dipole. We extend this functionalization to HER conditions and demonstrate systematic tuning of the HER Voc using pSi(111)-R|TiO2|Pt architecture. Correlation of the shifts in barrier height with the photovoltage provides evidence for nonideality despite low surface recombination. Critically, DFT calculations of the electronic structure of the organic-functionalized interfaces show that the molecule-based electronic states effectively hybridized with the silicon band edges. A comparison of these interfacial states with their isolated molecular analogues further confirms electronic coupling between the attached molecule and the underlying semiconductor, providing an induced density of interfacial states (IDIS) which decreases the potential drop across the semiconductor. These results demonstrate the delicate interplay between interfacial chemical structure, interfacial dipole, and electronic structure.

11.
Adv Mater ; 33(9): e2007269, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33491821

RESUMEN

2D monolayers represent some of the most deformable inorganic materials, with bending stiffnesses approaching those of lipid bilayers. Achieving 2D heterostructures with similar properties would enable a new class of deformable devices orders of magnitude softer than conventional thin-film electronics. Here, by systematically introducing low-friction twisted or heterointerfaces, interfacial engineering is leveraged to tailor the bending stiffness of 2D heterostructures over several hundred percent. A bending model is developed and experimentally validated to predict and design the deformability of 2D heterostructures and how it evolves with the composition of the stack, the atomic arrangements at the interfaces, and the geometry of the structure. Notably, when each atomic layer is separated by heterointerfaces, the total bending stiffness reaches a theoretical minimum, equal to the sum of the constituent layers regardless of scale of deformation-lending the extreme deformability of 2D monolayers to device-compatible multilayers.

12.
Langmuir ; 36(42): 12632-12648, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33064485

RESUMEN

Atomically clean surfaces of semiconducting oxides efficiently mediate the interconversion of gas-phase O2 and solid-phase oxygen interstitial atoms (Oi). First-principles calculations together with mesoscale microkinetic modeling are employed for TiO2(110) to determine reaction pathways, assess appropriate rate expressions, and obtain corresponding activation energies and pre-exponential factors. The Fermi energy (EF) at the surface influences the rate-determining step for both injection and annihilation of Oi. The barriers range between 0.72-0.82 eV for injection and 0.60-2.34 eV for annihilation and may be manipulated through intentional control of EF. At equilibrium, the microkinetic model and first-principles calculations indicate that interconversion of Oi species in the first and second sublayers limits the rate. The effective pre-exponential factors for injection and annihilation are surprisingly low, probably resulting from the use of simple Langmuir-like rate expressions to describe a complicated kinetic sequence.

13.
J Chem Phys ; 153(12): 124710, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003753

RESUMEN

In the same way that gases interact with oxide semiconductor surfaces from above, point defects interact from below. Previous experiments have described defect-surface reactions for TiO2(110), but an atomistic picture of the mechanism remains unknown. The present work employs computations by density functional theory of the thermodynamic stabilities of metastable states to elucidate possible reaction pathways for oxygen interstitial atoms at TiO2(110). The simulations uncover unexpected metastable states including dumbbell and split configurations in the surface plane that resemble analogous interstitial species in the deep bulk. Comparison of the energy landscapes involving neutral (unionized) and charged intermediates shows that the Fermi energy EF exerts a strong influence on the identity of the most likely pathway. The largest elementary-step thermodynamic barrier for interstitial injection trends mostly downward by 2.1 eV as EF increases between the valence and conduction band edges, while that for annihilation trends upward by 2.1 eV. Several charged intermediates become stabilized for most values of EF upon receiving conduction band electrons from TiO2, and the behavior of these species governs much of the overall energy landscape.

14.
ACS Appl Mater Interfaces ; 12(9): 10801-10808, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32036649

RESUMEN

Inducing and controlling three-dimensional deformations in monolayer two-dimensional materials is important for applications from stretchable electronics to origami nanoelectromechanical systems. For these applications, it is critical to understand how the properties of different materials influence the morphologies of two-dimensional atomic membranes under mechanical loading. Here, we systematically investigate the evolution of mechanical folding instabilities in uniaxially compressed monolayer graphene and MoS2 on a soft polydimethylsiloxane substrate. We examine the morphology of the compressed membranes using atomic force microscopy for compression from 0 to 33%. We find the membranes display roughly evenly spaced folds and observe two distinct stress release mechanisms under increasing compression. At low compression, the membranes delaminate to generate new folds. At higher compression, the membranes slip over the surface to enlarge existing folds. We observe a material-dependent transition between these two behaviors at a critical fold spacing of 1000 ± 250 nm for graphene and 550 ± 20 nm for MoS2. We establish a simple shear-lag model which attributes the transition to a competition between static friction and adhesion and gives the maximum interfacial static friction on polydimethylsiloxane of 3.8 ± 0.8 MPa for graphene and 7.7 ± 2.5 MPa for MoS2. Furthermore, in graphene, we observe an additional transition from standing folds to fallen folds at 8.5 ± 2.3 nm fold height. These results provide a framework to control the nanoscale fold structure of monolayer atomic membranes, which is a critical step in deterministically designing stretchable or foldable nanosystems based on two-dimensional materials.

15.
Nano Lett ; 20(2): 1201-1207, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31944113

RESUMEN

The creation and movement of dislocations determine the nonlinear mechanics of materials. At the nanoscale, the number of dislocations in structures become countable, and even single defects impact material properties. While the impact of solitons on electronic properties is well studied, the impact of solitons on mechanics is less understood. In this study, we construct nanoelectromechanical drumhead resonators from Bernal stacked bilayer graphene and observe stochastic jumps in frequency. Similar frequency jumps occur in few-layer but not twisted bilayer or monolayer graphene. Using atomistic simulations, we show that the measured shifts are a result of changes in stress due to the creation and annihilation of individual solitons. We develop a simple model relating the magnitude of the stress induced by soliton dynamics across length scales, ranging from <0.01 N/m for the measured 5 µm diameter to ∼1.2 N/m for the 38.7 nm simulations. These results demonstrate the sensitivity of 2D resonators are sufficient to probe the nonlinear mechanics of single dislocations in an atomic membrane and provide a model to understand the interfacial mechanics of different kinds of van der Waals structures under stress, which is important to many emerging applications such as engineering quantum states through electromechanical manipulation and mechanical devices like highly tunable nanoelectromechanical systems, stretchable electronics, and origami nanomachines.

16.
Nat Mater ; 19(4): 475, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31811280

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

17.
Nat Mater ; 19(3): 305-309, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31712745

RESUMEN

Continuum scaling laws often break down when materials approach atomic length scales, reflecting changes in their underlying physics and the opportunities to access unconventional properties. These continuum limits are evident in two-dimensional materials, where there is no consensus on their bending stiffnesses or how they scale with thickness. Through combined computational and electron microscopy experiments, we measure the bending stiffness of graphene, obtaining 1.2-1.7 eV for a monolayer. Moreover, we find that the bending stiffness of few-layer graphene decreases sharply as a function of bending angle, tuning by almost 400% for trilayer graphene. This softening results from shear, slip and the onset of superlubricity between the atomic layers and corresponds with a gradual change in scaling power from cubic to linear. Our results provide a unified model for bending in two-dimensional materials and show that their multilayers can be orders of magnitude softer than previously thought, among the most flexible electronic materials currently known.

18.
Adv Mater ; 32(1): e1905178, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31680355

RESUMEN

Solid-oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure-property relationships that would enable the rational design of better materials. Here, using epitaxial thin-film growth, synchrotron radiation, impedance spectroscopy, and density-functional theory, the impact of structural parameters (i.e., unit-cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9 Sr0.1 Ga0.95 Mg0.05 O3- δ . As compared to the zero-strain state, compressive strain reduces the unit-cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit-cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit-cell volumes and octahedral rotations decrease migration barriers and create low-energy migration pathways, respectively. The desired combination of large unit-cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit-cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion-conducting perovskite electrolytes.

19.
J Am Chem Soc ; 141(33): 13074-13080, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31361482

RESUMEN

Vacancy-ordered lead-free perovskites with more-stable crystalline structures have been intensively explored as the alternatives for resolving the toxic and long-term stability issues of lead halide perovskites (LHPs). The dispersive energy bands produced by the closely packed halide octahedral sublattice in these perovskites are meanwhile anticipated to facility the mobility of charge carriers. However, these perovskites suffer from unexpectedly poor charge carrier transport. To tackle this issue, we have employed the ultrafast, elemental-specific X-ray transient absorption (XTA) spectroscopy to directly probe the photoexcited electronic and structural dynamics of a prototypical vacancy-ordered lead-free perovskite (Cs3Bi2Br9). We have discovered that the photogenerated holes quickly self-trapped at Br centers, simultaneously distorting the local lattice structure, likely forming small polarons in the configuration of Vk center (Br2- dimer). More significantly, we have found a surprisingly long-lived, structural distorted state with a lifetime of ∼59 µs, which is ∼3 orders of magnitude slower than that of the charge carrier recombination. Such long-lived structural distortion may produce a transient "background" under continuous light illumination, influencing the charge carrier transport along the lattice framework.

20.
ChemSusChem ; 12(9): 1858-1871, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30693653

RESUMEN

Photoelectrochemical water splitting is a promising carbon-free approach to produce hydrogen from water. A photoelectrochemical cell consists of a semiconductor photoelectrode in contact with an aqueous electrolyte. Its performance is sensitive to properties of the photoelectrode/electrolyte interface, which may be tuned through functionalization of the photoelectrode surface with organic molecules. This can lead to improvements in the photoelectrode's properties. This Minireview summarizes key computational investigations on using molecular functionalization to modify photoelectrode stability, barrier height, and catalytic activity. It is discussed how first-principles density functional theory, first-principles molecular dynamics, and device modeling simulations can provide predictive insights and complement experimental investigations of functionalized photoelectrodes. Challenges and future directions in the computational modeling of functionalized photoelectrode/electrolyte interfaces within the context of experimental studies are also highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...