Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 6(66): eabj4026, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34919442

RESUMEN

Despite the enormous promise of T cell therapies, the isolation and study of human T cell receptors (TCRs) of dedicated specificity remains a major challenge. To overcome this limitation, we generated mice with a genetically humanized system of T cell immunity. We used VelociGene technology to replace the murine TCRαß variable regions, along with regions encoding the extracellular domains of co-receptors CD4 and CD8, and major histocompatibility complex (MHC) class I and II, with corresponding human sequences. The resulting "VelociT" mice have normal myeloid and lymphoid immune cell populations, including thymic and peripheral αß T cell subsets comparable with wild-type mice. VelociT mice expressed a diverse TCR repertoire, mounted functional T cell responses to lymphocytic choriomeningitis virus infection, and could develop experimental autoimmune encephalomyelitis. Immunization of VelociT mice with human tumor-associated peptide antigens generated robust, antigen-specific responses and led to identification of a TCR against tumor antigen New York esophageal squamous cell carcinoma-1 with potent antitumor activity. These studies demonstrate that VelociT mice mount clinically relevant T cell responses to both MHC-I­ and MHC-II­restricted antigens, providing a powerful new model for analyzing T cell function in human disease. Moreover, VelociT mice are a new platform for de novo discovery of therapeutic human TCRs.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Linfocitos T/inmunología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T alfa-beta/genética
2.
Proc Natl Acad Sci U S A ; 117(1): 292-299, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31879340

RESUMEN

We describe a Kappa-on-Heavy (KoH) mouse that produces a class of highly diverse, fully human, antibody-like agents. This mouse was made by replacing the germline variable sequences of both the Ig heavy-chain (IgH) and Ig kappa (IgK) loci with the human IgK germline variable sequences, producing antibody-like molecules with an antigen binding site made up of 2 kappa variable domains. These molecules, named KoH bodies, structurally mimic naturally existing Bence-Jones light-chain dimers in their variable domains and remain wild-type in their antibody constant domains. Unlike artificially diversified, nonimmunoglobulin alternative scaffolds (e.g., DARPins), KoH bodies consist of a configuration of normal Ig scaffolds that undergo natural diversification in B cells. Monoclonal KoH bodies have properties similar to those of conventional antibodies but exhibit an enhanced ability to bind small molecules such as the endogenous cardiotonic steroid marinobufagenin (MBG) and nicotine. A comparison of crystal structures of MBG bound to a KoH Fab versus a conventional Fab showed that the KoH body has a much deeper binding pocket, allowing MBG to be held 4 Å further down into the combining site between the 2 variable domains.


Asunto(s)
Anticuerpos/química , Anticuerpos/inmunología , Antígenos/inmunología , Cadenas Pesadas de Inmunoglobulina/química , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/inmunología , Cadenas kappa de Inmunoglobulina/química , Animales , Anticuerpos/genética , Anticuerpos/uso terapéutico , Secuencia de Bases , Sitios de Unión de Anticuerpos/genética , Bufanólidos , Ingeniería Genética , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Ratones , Modelos Moleculares , Nicotina , Conformación Proteica
3.
Biol Reprod ; 100(3): 686-696, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30289441

RESUMEN

The Adisintegrin and metalloprotease domain-containing (ADAM) family of proteins is involved in cell adhesion, migration, proteolysis, and signaling. Many ADAMs are required for reproduction; however, the role of Adam6 has remained largely unknown. In the course of humanizing the mouse immunoglobulin heavy chain (IgH) locus, we generated Adam6-deficient mice that demonstrate severe subfertility. We decided to elucidate the role of ADAM6 in fertility and explore the underlying mechanisms. Despite normal sperm development and motility, Adam6-deficient mice display diminished male fertility, have abnormal sperm adhesion, and most importantly cannot transition from uterus to oviduct. To test whether ADAM6 is required for sperm's binding to extracellular matrix (ECM) components, we used a panel of ECM components and showed that unlike normal sperm, Adam6-deficient sperm cannot bind fibronectin, laminin, and tenascin. Reintroduction of Adam6 into these deficient mice repaired sperm interaction with ECM, restored male fertility, and corrected the sperm transport deficit. Together, our data suggest that ADAM6, either alone or in complex with other proteins, aids sperm transport through the female reproductive tract by providing a temporary site of attachment of sperm to ECM components prior to ascent into the oviduct.


Asunto(s)
Proteínas ADAM/metabolismo , Infertilidad Masculina/genética , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Proteínas ADAM/genética , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Oviductos , Motilidad Espermática/genética
4.
Transgenic Res ; 24(1): 19-29, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25087174

RESUMEN

Known examples of male to female sex reversal in mice are caused by either strain incompatibilities or mutations in genes required for male sex determination. The resultant XY females are often sterile or exhibit very poor fertility. We describe here embryonic stem (ES) cell growth conditions that promote the production of healthy, anatomically normal fertile and fecund female F0 generation mice completely derived from gene-targeted XY male ES cells. The sex reversal is a transient trait that is not transmitted to the F1 progeny. Growth media with low osmolality and reduced sodium bicarbonate, maintained throughout the gene targeting process, enhance the yield of XY females. As a practical application of the induced sex reversal, we demonstrate the generation of homozygous mutant mice ready for phenotypic studies by the breeding of F0 XY females with their isogenic XY male clonal siblings, thereby eliminating one generation of breeding and the associated costs.


Asunto(s)
Trastornos del Desarrollo Sexual/genética , Fertilidad/genética , Disgenesia Gonadal 46 XY/genética , Procesos de Determinación del Sexo , Animales , Células Madre Embrionarias/citología , Femenino , Marcación de Gen , Masculino , Ratones , Microinyecciones , Mutación
5.
Proc Natl Acad Sci U S A ; 111(14): 5153-8, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24706856

RESUMEN

Mice genetically engineered to be humanized for their Ig genes allow for human antibody responses within a mouse background (HumAb mice), providing a valuable platform for the generation of fully human therapeutic antibodies. Unfortunately, existing HumAb mice do not have fully functional immune systems, perhaps because of the manner in which their genetic humanization was carried out. Heretofore, HumAb mice have been generated by disrupting the endogenous mouse Ig genes and simultaneously introducing human Ig transgenes at a different and random location; KO-plus-transgenic humanization. As we describe in the companion paper, we attempted to make mice that more efficiently use human variable region segments in their humoral responses by precisely replacing 6 Mb of mouse Ig heavy and kappa light variable region germ-line gene segments with their human counterparts while leaving the mouse constant regions intact, using a unique in situ humanization approach. We reasoned the introduced human variable region gene segments would function indistinguishably in their new genetic location, whereas the retained mouse constant regions would allow for optimal interactions and selection of the resulting antibodies within the mouse environment. We show that these mice, termed VelocImmune mice because they were generated using VelociGene technology, efficiently produce human:mouse hybrid antibodies (that are rapidly convertible to fully human antibodies) and have fully functional humoral immune systems indistinguishable from those of WT mice. The efficiency of the VelocImmune approach is confirmed by the rapid progression of 10 different fully human antibodies into human clinical trials.


Asunto(s)
Formación de Anticuerpos , Genes de Inmunoglobulinas , Alelos , Animales , Linfocitos B/inmunología , Citometría de Flujo , Humanos , Ratones , Mutación
6.
Methods Enzymol ; 476: 295-307, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20691873

RESUMEN

Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction (qPCR) as our method of allele quantification, but any method that can reliably distinguish the difference between one and two copies of the target gene can be used to develop an LOA assay. We have designed qPCR LOA assays for deletions, insertions, point mutations, domain swaps, conditional, and humanized alleles and have used the insert assays to quantify the copy number of random insertion BAC transgenics. Because of its quantitative precision, specificity, and compatibility with high throughput robotic operations, the LOA assay eliminates bottlenecks in ES cell screening and mouse genotyping and facilitates maximal speed and throughput for knockout mouse production.


Asunto(s)
Bioensayo/métodos , Células Madre Embrionarias/fisiología , Marcación de Gen/métodos , Genotipo , Pérdida de Heterocigocidad , Animales , Bioensayo/instrumentación , Células Madre Embrionarias/citología , Humanos , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa/instrumentación , Reacción en Cadena de la Polimerasa/métodos
7.
Nat Biotechnol ; 25(1): 91-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17187059

RESUMEN

A useful approach for exploring gene function involves generating mutant mice from genetically modified embryonic stem (ES) cells. Recent advances in genetic engineering of ES cells have shifted the bottleneck in this process to the generation of mice. Conventional injections of ES cells into blastocyst hosts produce F0 generation chimeras that are only partially derived from ES cells, requiring additional breeding to obtain mutant mice that can be phenotyped. The tetraploid complementation approach directly yields mice that are almost entirely derived from ES cells, but it is inefficient, works only with certain hybrid ES cell lines and suffers from nonspecific lethality and abnormalities, complicating phenotypic analyses. Here we show that laser-assisted injection of either inbred or hybrid ES cells into eight cell-stage embryos efficiently yields F0 generation mice that are fully ES cell-derived and healthy, exhibit 100% germline transmission and allow immediate phenotypic analysis, greatly accelerating gene function assignment.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/trasplante , Marcación de Gen/métodos , Terapia por Láser/métodos , Ratones Transgénicos/genética , Microinyecciones/métodos , Trasplante de Células Madre/métodos , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos/anatomía & histología , Ratones Transgénicos/cirugía , Microcirugia/métodos , Fenotipo
8.
Nat Biotechnol ; 21(6): 652-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12730667

RESUMEN

One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene, that uses targeting vectors based on bacterial artificial chromosomes (BACs). VelociGene permits genetic alteration with nucleotide precision, is not limited by the size of desired deletions, does not depend on isogenicity or on positive-negative selection, and can precisely replace the gene of interest with a reporter that allows for high-resolution localization of target-gene expression. We describe custom genetic alterations for hundreds of genes, corresponding to about 0.5-1.0% of the entire genome. We also provide dozens of informative expression patterns involving cells in the nervous system, immune system, vasculature, skeleton, fat and other tissues.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales Bacterianos/metabolismo , Perfilación de la Expresión Génica/métodos , Ingeniería Genética/métodos , Genoma , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Electroporación/métodos , Marcación de Gen/métodos , Ratones/genética , Mutagénesis Insercional/métodos , Mutagénesis Sitio-Dirigida , Control de Calidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...