Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(22)2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38005572

RESUMEN

Integral controllers are commonly employed in astronomical adaptive optics. This work presents a novel tuning procedure for integral controllers in adaptive optics systems which relies on information about the measured disturbances. This tuning procedure consists of two main steps. First, it models and identifies measured disturbances as continuous-time-damped oscillators using Whittles´s likelihood and the wavefront sensor output signal. Second, it determines the integral controller gain of the adaptive optics system by minimizing the output variance. The effectiveness of this proposed method is evaluated through theoretical examples and numerical simulations conducted using the Object-Oriented Matlab Adaptive Optics toolbox. The simulation results demonstrate that this approach accurately estimates the disturbance model and can reduce the output variance. Our proposal results in improved performance and better astronomical images even in challenging atmospheric conditions. These findings significantly contribute to adaptive optics system operations in astronomical observatories and establish our procedure as a promising tool for fine-tuning integral controllers in astronomical adaptive optics systems.

2.
Sensors (Basel) ; 22(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36015842

RESUMEN

The quality control for fruit maturity inspection is a key issue in fruit packaging and international trade. The quantification of Soluble Solids (SS) in fruits gives a good approximation of the total sugar concentration at the ripe stage, and on the other hand, SS alone or in combination with acidity is highly related to the acceptability of the fruit by consumers. The non-destructive analysis based on Visible (VIS) and Near-Infrared (NIR) spectroscopy has become a popular technique for the assessment of fruit quality. To improve the accuracy of fruit maturity inspection, VIS−NIR spectra models based on machine learning techniques are proposed for the non-destructive evaluation of soluble solids in considering a range of variations associated with varieties of stones fruit species (peach, nectarine, and plum). In this work, we propose a novel approach based on a Convolutional Neural Network (CNN) for the classification of the fruits into species and then a Feedforward Neural Network (FNN) to extract the information of VIS−NIR spectra to estimate the SS content of the fruit associated to several varieties. A classification accuracy of 98.9% was obtained for the CNN classification model and a correlation coefficient of Rc>0.7109 for the SS estimation of the FNN models was obtained. The results reported show the potential of this method for a fast and on-line classification of fruits and estimation of SS concentration.


Asunto(s)
Frutas , Espectroscopía Infrarroja Corta , Comercio , Frutas/química , Internacionalidad , Aprendizaje Automático , Espectroscopía Infrarroja Corta/métodos
3.
Sensors (Basel) ; 21(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206104

RESUMEN

In control and monitoring of manufacturing processes, it is key to understand model uncertainty in order to achieve the required levels of consistency, quality, and economy, among others. In aerospace applications, models need to be very precise and able to describe the entire dynamics of an aircraft. In addition, the complexity of modern real systems has turned deterministic models impractical, since they cannot adequately represent the behavior of disturbances in sensors and actuators, and tool and machine wear, to name a few. Thus, it is necessary to deal with model uncertainties in the dynamics of the plant by incorporating a stochastic behavior. These uncertainties could also affect the effectiveness of fault diagnosis methodologies used to increment the safety and reliability in real-world systems. Determining suitable dynamic system models of real processes is essential to obtain effective process control strategies and accurate fault detection and diagnosis methodologies that deliver good performance. In this paper, a maximum likelihood estimation algorithm for the uncertainty modeling in linear dynamic systems is developed utilizing a stochastic embedding approach. In this approach, system uncertainties are accounted for as a stochastic error term in a transfer function. In this paper, we model the error-model probability density function as a finite Gaussian mixture model. For the estimation of the nominal model and the probability density function of the parameters of the error-model, we develop an iterative algorithm based on the Expectation-Maximization algorithm using the data from independent experiments. The benefits of our proposal are illustrated via numerical simulations.


Asunto(s)
Algoritmos , Funciones de Verosimilitud , Distribución Normal , Reproducibilidad de los Resultados , Procesos Estocásticos , Incertidumbre
4.
Sensors (Basel) ; 21(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925593

RESUMEN

Modern large telescopes are built based on the effectiveness of adaptive optics systems in mitigating the detrimental effects of wavefront distortions on astronomical images. In astronomical adaptive optics systems, the main sources of wavefront distortions are atmospheric turbulence and mechanical vibrations that are induced by the wind or the instrumentation systems, such as fans and cooling pumps. The mitigation of wavefront distortions is typically attained via a control law that is based on an adequate and accurate model. In this paper, we develop a modelling technique based on continuous-time damped-oscillators and on the Whittle's likelihood method to estimate the parameters of disturbance models from wavefront sensor time-domain sampled-data. On the other hand, when the model is not accurate, the performance of the minimum variance controller is affected. We show that our modelling and identification techniques not only allow for more accurate estimates, but also for better minimum variance control performance. We illustrate the benefits of our proposal via numerical simulations.

5.
PLoS One ; 13(12): e0208499, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532211

RESUMEN

We present an algorithm for a class of statistical inference problems. The main idea is to reformulate the inference problem as an optimization procedure, based on the generation of surrogate (auxiliary) functions. This approach is motivated by the MM algorithm, combined with the systematic and iterative structure of the Expectation-Maximization algorithm. The resulting algorithm can deal with hidden variables in Maximum Likelihood and Maximum a Posteriori estimation problems, Instrumental Variables, Regularized Optimization and Constrained Optimization problems. The advantage of the proposed algorithm is to provide a systematic procedure to build surrogate functions for a class of problems where hidden variables are usually involved. Numerical examples show the benefits of the proposed approach.


Asunto(s)
Algoritmos , Modelos Estadísticos , Simulación por Computador , Predicción/métodos , Procesamiento de Imagen Asistido por Computador , Funciones de Verosimilitud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA