Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Pharmacol Rep ; 69(3): 504-511, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28343093

RESUMEN

BACKGROUND: Identified the polymorphisms of CYP2D6, CYP2C9, CYP2C19 and CYP3A4, within a rigorously selected population of pediatric patients with drug-resistant epilepsy. METHOD: The genomic DNA of 23 drug-resistant epilepsy patients and 7 patients with good responses were analyzed. Ten exons in these four genes were genotyped, and the drug concentrations in saliva and plasma were determined. RESULTS: The relevant SNPs with pharmacogenomics relations were CYP2D6*2 (rs16947) decreased your activity and CYP2D6*4 (rs1065852), CYP2C19*2 (rs4244285) and CYP3A4*1B (rs2740574) by association with poor metabolizer. The strongest risk factors were found in the AA genotype and allele of SNP rs3892097 from the CYP2D6 gene, followed by the alleles A and T of SNPs rs2740574 and rs2687116, respectively from CYP3A4. The most important concomitance was between homozygous genotype AA of rs3892097 and genotype AA of rs2740574 with 78.3% in drug-resistant epilepsy patients as compared to 14.3% in control patients. CONCLUSION: The results demonstrated the important role of the CYP 3A4*1B allelic variant as risk factor for developing drug resistance and CYP2D6, CYP2C19 SNPs and haplotypes may affect the response to antiepileptic drugs.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Citocromo P-450 CYP3A/genética , Epilepsia/tratamiento farmacológico , Farmacogenética , Adolescente , Alelos , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacología , Niño , Preescolar , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2D6/genética , Resistencia a Medicamentos , Epilepsia/genética , Femenino , Variación Genética , Genotipo , Humanos , Lactante , Masculino , Polimorfismo de Nucleótido Simple , Factores de Riesgo
2.
Front Neurol ; 5: 184, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25346718

RESUMEN

Although the Pgp efflux transport protein is overexpressed in resected tissue of patients with epilepsy, the presence of polymorphisms in MDR1/ABCB1 and MRP2/ABCC2 in patients with antiepileptic-drugs resistant epilepsy (ADR) is controversial. The aim of this study was to perform an exploratory study to identify nucleotide changes and search new and reported mutations in patients with ADR and patients with good response (CTR) to antiepileptic drugs (AEDs) in a rigorously selected population. We analyzed 22 samples In Material and Methods, from drug-resistant patients with epilepsy and 7 samples from patients with good response to AEDs. Genomic DNA was obtained from leukocytes. Eleven exons in both genes were genotyped. The concentration of drugs in saliva and plasma was determined. The concentration of valproic acid in saliva was lower in ADR than in CRT. In ABCB1, five reported SNPs and five unreported nucleotide changes were identified; rs2229109 (GA) and rs2032582 (AT and AG) were found only in the ADR. Of six SNPs associated with the ABCC2 that were found in the study population, rs3740066 (TT) and 66744T > A (TG) were found only in the ADR. The strongest risk factor in the ABCB1 gene was identified as the TA genotype of rs2032582, whereas for the ABCC2 gene the strongest risk factor was the T allele of rs3740066. The screening of SNPs in ACBC1 and ABCC2 indicates that the Mexican patients with epilepsy in this study display frequently reported ABCC1 polymorphisms; however, in the study subjects with a higher risk factor for drug resistance, new nucleotide changes were found in the ABCC2 gene. Thus, the population of Mexican patients with AED-resistant epilepsy (ADR) used in this study exhibits genetic variability with respect to those reported in other study populations; however, it is necessary to explore this polymorphism in a larger population of patients with ADR.

3.
Front Biosci (Elite Ed) ; 6(2): 377-86, 2014 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-24896213

RESUMEN

Several factors, including pharmacogenetics, contribute to inter-individual variability in drug response. Many antiepileptic drugs (AEDs) are metabolized by a variety of enzymatic reactions, and the cytochrome P450 (CYP) family has attracted considerable attention. Some of the CYPs exist as genetic (allelic) variants, which may also affect the plasma concentrations or drug exposure. Regarding the metabolism of AEDs, the polymorphic CYP2C9 and CYP2C19 are of particular interest. There have been recent advances in discovering factors such as these, especially those underlying the risk of medication toxicity. This review summarizes the evidence about whether such polymorphisms affect the clinical action of AEDs to facilitate future studies on the pharmacogenetics of epilepsy. We performed Key Words searches in the public databases PubMed, Medscape, and Rxlisty, Pharm GKB for genetic polymorphisms and the NCBI website for the nomenclature of alleles of CYP450, finding that CYP2D6, CYP2C9, CYP3A4, and CYP2D19 were involved in the metabolism of most antiepileptic drugs, given the allele frequency in the population and the associated variability in the clinical response.


Asunto(s)
Anticonvulsivantes/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Redes y Vías Metabólicas/genética , Polimorfismo Genético/genética , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Frecuencia de los Genes , Humanos , Farmacogenética , PubMed
4.
Front Cell Neurosci ; 8: 442, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25601827

RESUMEN

Temporal lobe epilepsy (TLE) is a chronic neurodegenerative disease with a high prevalence of psychiatric disorders. Temporal neocortex contributes to either seizure propagation or generation in TLE, a situation that has been associated with alterations of the γ-amino-butyric acid (GABA) system. On the other hand, an impaired neurotransmission mediated by GABA in temporal neocortex has also been involved with the pathophysiology of psychiatric disorders. In spite of these situations, the role of the necortical GABA system in the comorbidity of TLE and mood disorders has not been investigated. The present study was designed to identify alterations in the GABA system such as binding to GABAA and GABAB receptors and benzodiazepine site, the tissue content of GABA and the expression of the mRNA encoding the α1-6, ß1-3, and γ GABAA subunits, in the temporal neocortex of surgically treated patients with TLE with and without anxiety, and/or depression. Neocortex of patients with TLE and comorbid anxiety and/or depression showed increased expression of the mRNA encoding the γ2-subunit, reduced GABAB-induced G-protein activation in spite of elevated GABAB binding, and lower tissue content of GABA when compared to autopsy controls. Some of these changes significantly correlated with seizure frequency and duration of epilepsy. The results obtained suggest a dysfunction of the GABAergic neurotransmission in temporal neocortex of patients with TLE and comorbid anxiety and/or depression that could be also influenced by clinical factors such as seizure frequency and duration of illness.

5.
Rev. chil. neuro-psiquiatr ; 51(2): 137-148, abr. 2013. ilus
Artículo en Español | LILACS | ID: lil-682332

RESUMEN

Epilepsy affects 1 and 2 percent of the worldwide population, while temporal lobe epilepsy (TLE) covers 40 percent of all epilepsy cases. Controversy in defining epilepsy as a neurodegenerative disease exists because, no there is enough evidence to show seizures and status epilepticus (SE) as cause for irreversible neuronal damage. Epileptogenic insult at the beginning of the disease produces an acute and delayed neuronal death, resulting in gliosis, but also triggers compensatory processes such as angiogenesis, cell proliferation and reorganization of extracellular matrix as receptors, channels and drug transporter proteins. In neurogenesis and axonal regrowth, the age of onset is crucial for the formation of abnormal neurons and aberrant circuits as a result of seizures; approximately 30 percent begin in the temporal lobe. These disturbances continue in parallel or sequentially during the course of epilepsy, which implies a great challenge in the search of new treatments...


La epilepsia es una enfermedad que afecta entre el 1 al 2 por ciento de la población mundial, siendo la epilepsia del lóbulo temporal (ELT) la que abarca el 40 por ciento de todos los casos de epilepsia. La controversia en definir a la epilepsia como una enfermedad neurodegenerativa, se debe a que no hay pruebas suficientes que demuestren como las convulsiones y el estado de mal epiléptico (SE) provocan un daño neuronal irreversible. El insulto epileptógenico presente al inicio de la enfermedad genera la muerte neuronal aguda y tardía, para dar lugar a la gliosis; pero también se desencadenan procesos compensatorios como la angiogénesis, la proliferación celular y una reorganización tanto de la matriz extracelular como de los receptores, canales y proteínas transportadoras de fármacos. En el caso de la neurogénesis y recrecimiento axonal, la edad de inicio es determinante para la formación de neuronas anormales y circuitos aberrantes como consecuencia de las convulsiones, dónde aproximadamente un 30 por ciento comienzan en el lóbulo temporal. Estas alteraciones se continúan en paralelo o de forma secuencia! durante la evolución de la epilepsia, lo que implica un gran desafío en la búsqueda de nuevos tratamientos...


Asunto(s)
Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/fisiopatología , Degeneración Nerviosa/etiología , Degeneración Nerviosa/fisiopatología , Gliosis , Inflamación , Neovascularización Patológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...