Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37444359

RESUMEN

Blueberries (Vaccinium corymbosum L.) are becoming increasingly popular for their nutritional and health benefits, and their economic value is therefore increasing. The loss of quality that can occur due to softening and fungal attack is an important consideration when marketing blueberries. Despite the added value of blueberries, no studies have been carried out on how the fruit arrives at the outlets just before purchase by the consumer in terms of firmness, physico-chemical parameters, phenolic compounds, and fungal growth. The aim of this work has been, therefore, to investigate possible differences in quality parameters between blueberries purchased from ten different outlets, regardless of the supplier. The results showed that all the samples were of acceptable quality, although they all had a low maturity index at the point of sale. None of the samples studied showed clear signs of fungal decay at the time of purchase, although we were able to grow and identify some pathogen specimens after cultivation. In terms of total phenolic and anthocyanin content, as well as antioxidant activity, all the samples showed low values, possibly due to their postharvest storage, but they were within the expected range for this fruit. On the other hand, differences in the measured parameters were observed between samples of the same cultivar while no differences were found between conventionally and organically grown blueberries. This suggests that preharvest (such as edaphoclimatic conditions, agricultural practices, and cultivars) and postharvest factors (such as treatments used, storage, and transport temperatures) could influence the berry quality when they reach the consumer.

2.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362091

RESUMEN

Short-term gaseous treatments improve rachis quality during table grape postharvest, but little is known about the mechanisms involved. In this work, we observed that the application of a 3-day CO2 treatment at 0 °C improved rachis browning of Superior Seedless and Red Globe bunches, affecting the non-enzymatic antioxidant system by reducing the total phenolic content, the antioxidant activity and the expression of different stilbene synthase genes. Lipid peroxidation levels revealed lower oxidative stress in CO2-treated rachis of both cultivars linked to the activation of the enzymatic antioxidant system. Furthermore, whereas a positive correlation was denoted between rachis browning and the accumulation of key ABA regulatory genes in Red Globe bunches, this effect was restricted to ACS1, a key synthetic ethylene gene, in Superior Seedless clusters. This work also corroborated the important role of ethylene-responsive factors in the beneficial effect of the gaseous treatment, not only in the berries but also in the rachis. Finally, the application of the gaseous treatment avoided the induction of cell wall-degrading enzyme-related genes in both cultivars, which could favor the maintenance of rachis quality. This work provides new insight into specific responses modulated by the gaseous treatment focused on mitigating rachis browning independently of the cultivar.


Asunto(s)
Vitis , Vitis/genética , Gases/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Dióxido de Carbono/metabolismo , Temperatura , Frutas/metabolismo , Etilenos/farmacología , Etilenos/metabolismo
3.
J Agric Food Chem ; 70(28): 8593-8597, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35792090

RESUMEN

Soft fruits are appreciated for their taste qualities and for being a source of health-promoting compounds. However, their postharvest is affected by their high respiratory rates and susceptibility to fungal decay. Our aim here is to provide a perspective on the application of short-term high-CO2 treatments at a low temperature to maintain the postharvest quality of soft fruits. This work also suggests using a multi-omics approach to better understand the role of the cell wall and phenolic compounds in maintaining quality. Finally, the contribution of high-throughput transcriptomic technologies to understand the mechanisms modulated by the short-term gaseous treatments is also highlighted.


Asunto(s)
Dióxido de Carbono , Frutas , Frío , Frutas/genética , Frutas/microbiología , Proteómica , Transcriptoma
4.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34360903

RESUMEN

Despite the fact that many studies have examined the effectiveness of different gaseous postharvest treatments applied at low temperature to maintain table grape quality, the use of ethanol vapor has hardly been investigated. Thus, this work has studied the effectiveness of ethanol vapor-generating sachets in the maintenance of It 681-30 table grape quality, a new cultivar, during storage at low temperature and after the shelf-life period at 20 °C. To this end, various quality assessments have been carried out and the effect of the ethanol treatment on the expression of different genes (phenylpropanoids, transcription factors, PRs, and aquaporins) was determined. The results indicated that the application of ethanol vapor reduced the total decay incidence, weight loss, and the rachis browning index in It 681-30 grapes stored at 0 °C and after the shelf-life period at 20 °C, as compared to non-treated samples. Moreover, the modulation of STS7 and the different PR genes analyzed seems to play a part in the molecular mechanisms activated to cope with fungal attacks during the postharvest of It 681-30 grapes, and particularly during the shelf-life period at 20 °C. Furthermore, the expression of aquaporin transcripts was activated in samples showing higher weight loss. Although further work is needed to elucidate the role of ethanol in table grape quality, the results obtained in this work provide new insight into the transcriptional regulation triggered by ethanol treatment.


Asunto(s)
Frío , Etanol/farmacología , Conservación de Alimentos/métodos , Conservantes de Alimentos/farmacología , Calidad de los Alimentos , Almacenamiento de Alimentos/métodos , Frutas/efectos de los fármacos , Gases/farmacología , Vitis/efectos de los fármacos , Acuaporinas/genética , Frutas/genética , Expresión Génica/efectos de los fármacos , Reacción de Maillard/efectos de los fármacos , Proteínas de Plantas/genética , Factores de Transcripción/genética , Transcripción Genética/efectos de los fármacos , Vitis/genética , Volatilización
5.
Plant Physiol Biochem ; 156: 30-38, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32906019

RESUMEN

The application of one or two short-term treatments with high levels of CO2 during 3 days at 0 °C maintained the quality of Autumn Royal table grapes (Vitis vinifera) during storage at 0 °C. We have analyzed how the application of a 3-day gaseous treatment, for one or two times at 0 °C, influences on common (VviPAL, VviCHS, VviCHI, VviF3'H, VviF3'5'H, VviF3H and VviLDOX) and branch-specific (VviFLS1, VviLAR1, VviLAR2, VviANR and VviUFGT) flavonoid gene expression in the skin of Autumn Royal table grapes. Likewise, the content of flavonols, flavan-3-ols and anthocyanins were identified with Q-TOF equipment and quantified by HPLC-quadrupole together with the total phenolic content and the antioxidant capacity by the ABTS and FRAP methods. Moreover, we have also used a solid-state voltammetry methodology to compare the effect of the application of one or two gaseous treatments in the skin of table grapes stored at 0 °C. Results revealed that the application of one or two gaseous treatments modulated the expression of flavonoid gene expression and the levels of catechin, in the case of one application, or quercetin-3-glucoside and five anthocyanins in fruit treated twice, maintaining their levels after 28 days of storage at 0 °C similar to those recorded in freshly harvested fruit. Satisfactorily, the electrochemical approach was useful to distinguish between treated and non-treated samples not only in the first stage of storage but also after 16 days.


Asunto(s)
Dióxido de Carbono , Flavonoides/biosíntesis , Vitis/metabolismo , Antocianinas/biosíntesis , Frío , Frutas/metabolismo
6.
Plant Physiol Biochem ; 151: 334-341, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32259674

RESUMEN

Phenolic compounds, such as phytoalexin resveratrol, can be induced in grapes in response to biotic and abiotic stresses and have been related in many healthy effects. Stilbene synthases (STSs) are the key enzyme responsible for resveratrol biosynthesis. They have been already isolated and characterized from several plant species, however, VviSTS is a multigene family and little is known about their modulation in response to the application of gaseous treatments that maintain table grapes quality during postharvest. In this work, we have analyzed the effect of a 3-day CO2 treatment on the modulation of 4 STSs (VviSTS6, VviSTS7, VviSTS16 and VviSTS46) and on the accumulation of different stilbene compounds (resveratrol, resveratrol-glucoside, trans-piceatannol, z-miyabenol and pallidol) during the postharvest storage at 0 °C of white (Superior Seedless, Dominga), red (Red Globe) and black (Autumn Royal) table grapes. Results indicated that the accumulation of the stilbene compounds by the application of CO2 and low temperature storage were cultivar dependent. In white Dominga fruit, accumulation of stilbene compounds increased in CO2-treated samples what seems to be modulated by VviSTS6, VviSTS7 and VviSTS46. However, in Red Globe the accumulation of compounds was mainly due to the cold storage in air and seems to be also mediated by the induction of the same VviSTSs. By contrast, in Superior Seedless and Autumn Royal table grapes the modulation of VviSTSs genes and the stilbene accumulation was independent of the atmosphere storage. Further studies would be needed to elucidate the possible role of transcription factors involved on VviSTSs modulation.


Asunto(s)
Dióxido de Carbono , Frío , Regulación de la Expresión Génica , Estilbenos , Vitis , Dióxido de Carbono/farmacología , Almacenamiento de Alimentos , Frutas/efectos de los fármacos , Frutas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Estilbenos/metabolismo , Vitis/efectos de los fármacos , Vitis/genética
7.
Front Plant Sci ; 7: 1020, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27468290

RESUMEN

Table grapes (Vitis vinifera cv. Cardinal) are highly perishable and their quality deteriorates during postharvest storage at low temperature mainly because of sensitivity to fungal decay and senescence of rachis. The application of a 3-day CO2 treatment (20 kPa CO2 + 20 kPa O2 + 60 kPa N2) at 0°C reduced total decay and retained fruit quality in early and late-harvested table grapes during postharvest storage. In order to study the transcriptional responsiveness of table grapes to low temperature and high CO2 levels in the first stage of storage and how the maturity stage affect these changes, we have performed a comparative large-scale transcriptional analysis using the custom-made GrapeGen GeneChip®. In the first stage of storage, low temperature led to a significantly intense change in grape skin transcriptome irrespective of fruit maturity, although there were different changes within each stage. In the case of CO2 treated samples, in comparison to fruit at time zero, only slight differences were observed. Functional enrichment analysis revealed that major modifications in the transcriptome profile of early- and late-harvested grapes stored at 0°C are linked to biotic and abiotic stress-responsive terms. However, in both cases there is a specific reprogramming of the transcriptome during the first stage of storage at 0°C in order to withstand the cold stress. Thus, genes involved in gluconeogenesis, photosynthesis, mRNA translation and lipid transport were up-regulated in the case of early-harvested grapes, and genes related to protein folding stability and intracellular membrane trafficking in late-harvested grapes. The beneficial effect of high CO2 treatment maintaining table grape quality seems to be an active process requiring the induction of several transcription factors and kinases in early-harvested grapes, and the activation of processes associated to the maintenance of energy in late-harvested grapes.

8.
J Plant Physiol ; 169(7): 744-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22341570

RESUMEN

CBFs (C-repeat binding factors) are transcription factors that are rapidly induced by low temperature and that recognize the CRT/DRE element in the promoter of a set of cold regulated genes, the CBF regulon. Dehydrins are proteins that accumulate in plants under stress conditions, such as low temperature, and some form part of the CBF regulon. To investigate their role in the response of table grape clusters to 0°C long storage as well as to 3-day high CO2 postharvest treatment, we isolated two partial CBF genes (VvcCBF1 and VvcCBF4) and a full-length dehydrin (VvcDHN1a) from Vitis vinifera cv. Cardinal. Hydrophobic cluster analysis (HCA) identified differences in the secondary and tertiary structure between Vitis CBF4s and CBF1s. Overall, our results showed that, in table grapes, the expression of CBF genes is induced mainly in response to CO2 treatment, suggesting that the response of DHN1a in this fruit could be attributed to a cold-inducible CBF-independent pathway.


Asunto(s)
Dióxido de Carbono/farmacología , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , Vitis/fisiología , Secuencia de Aminoácidos , Clonación Molecular , Análisis por Conglomerados , Frío , ADN de Plantas/genética , Frutas/genética , Frutas/metabolismo , Frutas/fisiología , Datos de Secuencia Molecular , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Semillas/genética , Semillas/metabolismo , Semillas/fisiología , Análisis de Secuencia de ADN , Factores de Transcripción/química , Activación Transcripcional/genética , Vitis/genética , Vitis/metabolismo
9.
J Agric Food Chem ; 57(19): 8893-900, 2009 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-19769368

RESUMEN

Gene expression of a class I chitinase (Vcchit1b) in the skin of table grapes was analyzed as a molecular marker for changes induced at low temperature and also to study the effect of high CO(2) levels modulating transcript levels at 0 degrees C. An active recombinant VcCHIT1b was overexpressed in Escherichia coli, and as the protein was produced as insoluble inclusion bodies, it was solubilized and refolded. The purified recombinant chitinase showed an optimum pH of 6.0 and a temperature of 50 degrees C, retaining activity at 0 and -10 degrees C. Purified chitinase exerted in vitro antifungal activity against Botrytis cinerea. Furthermore, recombinant chitinase was able to cryoprotect lactate dehydrogenase against freeze/thaw inactivation. However, the recombinant VcCHIT1b did not show any antifreeze activity when the thermal hysteresis activity was measured using differential scanning calorimetry.


Asunto(s)
Quitinasas/genética , Crioprotectores , Frutas/enzimología , Fungicidas Industriales , Vitis/enzimología , Secuencia de Aminoácidos , Quitinasas/metabolismo , Quitinasas/farmacología , Escherichia coli/genética , Congelación , Fungicidas Industriales/farmacología , Expresión Génica , L-Lactato Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Alineación de Secuencia
10.
J Agric Food Chem ; 52(15): 4758-63, 2004 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-15264911

RESUMEN

In this study we focused on the effect of a pretreatment with high (20%) CO2 levels on malic acid metabolism in cherimoya (Annona cherimola Mill) fruit stored at chilling temperature. We analyzed the activity of phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), and the NADP-malic enzyme (NADP-ME), involved in the carboxylation/decarboxylation of malate. Our results show that CO2 treatment, which improves tolerance to prolonged storage at chilling temperature, was closely linked to considerably greater NADP-ME activity. These results, combined with lower PEPC activity, may explain the significantly lower amount of malic acid and titratable acidity quantified in CO2-treated fruit. Moreover, the high cytoplasmic MDH enzyme activity and the strong stimulation of NADP-ME activity exhibited by CO2-treated fruit could be contributing factors in the maintenance of fruit energy metabolism, pH stability, and the promotion of synthesis of defense compounds that prevent or repair damage caused by chilling temperature.


Asunto(s)
Annona/metabolismo , Dióxido de Carbono/administración & dosificación , Frío , Frutas/metabolismo , Malatos/metabolismo , Ácido Cítrico/análisis , Descarboxilación , Frutas/química , Concentración de Iones de Hidrógeno , Malato Deshidrogenasa/metabolismo , Malatos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...