Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 200(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29784887

RESUMEN

Disulfide bonds influence the stability and activity of many proteins. In Escherichia coli, the DsbA and DsbB enzymes promote disulfide bond formation. Other bacteria, including the Actinobacteria, use instead of DsbB the enzyme vitamin K epoxide reductase (VKOR), whose gene is found either fused to or in the same operon as a dsbA-like gene. Mycobacterium tuberculosis and other Gram-positive actinobacteria secrete many proteins with even numbers of cysteines to the cell envelope. These organisms have predicted oxidoreductases and VKOR orthologs. These findings indicate that such bacteria likely form disulfide bonds in the cell envelope. The M. tuberculosisvkor gene complements an E. colidsbB deletion strain, restoring the oxidation of E. coli DsbA. While we have suggested that the dsbA gene linked to the vkor gene may express VKOR's partner in mycobacteria, others have suggested that two other extracytoplasmic oxidoreductases (DsbE or DsbF) may be catalysts of protein disulfide bond formation. However, there is no direct evidence for interactions of VKOR with either DsbA, DsbE, or DsbF. To identify the actual substrate of VKOR, we identified two additional predicted extracytoplasmic DsbA-like proteins using bioinformatics analysis of the M. tuberculosis genome. Using the five potential DsbAs, we attempted to reconstitute disulfide bond pathways in E. coli and in Mycobacterium smegmatis, a close relative of M. tuberculosis Our results show that only M. tuberculosis DsbA is oxidized by VKOR. Comparison of the properties of dsbA- and vkor-null mutants in M. smegmatis shows parallels to the properties of dsb mutations in E. coliIMPORTANCE Disulfide bond formation has a great impact on bacterial pathogenicity. Thus, disulfide-bond-forming proteins represent new targets for the development of antibacterials, since the inhibition of disulfide bond formation would result in the simultaneous loss of the activity of several classes of virulence factors. Here, we identified five candidate proteins encoded by the M. tuberculosis genome as possible substrates of the M. tuberculosis VKOR protein involved in disulfide bond formation. We then reconstituted the mycobacterial disulfide bond formation pathway in E. coli and showed that of the five candidates, only M. tuberculosis DsbA is efficiently oxidized by VKOR in E. coli We also present evidence for the involvement of VKOR in DsbA oxidation in M. smegmatis.


Asunto(s)
Proteínas Bacterianas/genética , Disulfuros/metabolismo , Mycobacterium tuberculosis/genética , Tiorredoxinas/metabolismo , Vitamina K Epóxido Reductasas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/patogenicidad , Oxidación-Reducción , Oxidorreductasas , Proteína Disulfuro Isomerasas/metabolismo , Vitamina K Epóxido Reductasas/metabolismo
2.
Protein Eng Des Sel ; 30(9): 673-684, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981915

RESUMEN

Bispecific antibodies that redirect the lytic activity of cytotoxic immune effector cells, such as T- and NK cells, onto tumor cells have emerged as a highly attractive and clinically validated treatment modality for hematological malignancies. Advancement of this therapeutic concept into solid tumor indications, however, is hampered by the scarcity of targetable antigens that are surface-expressed on tumor cells but demonstrate only limited expression on healthy tissues. To overcome this limitation, the concept of dual-targeting, i.e. the simultaneous targeting of two tumor-expressed surface antigens with limited co-expression on non-malignant cells, with multispecific antibodies has been proposed to increase tumor selectivity of antibody-induced effector cell cytotoxicity. Here, a novel CD16A (FcγRIIIa)-directed trispecific, tetravalent antibody format, termed aTriFlex, is described, that is capable of redirecting NK cell cytotoxicity to two surface-expressed antigens. Using a BCMA/CD200-based in vitro model system, the potential use of aTriFlex antibodies for dual-targeting and selective induction of NK cell-mediated target cell lysis was investigated. Bivalent bispecific target cell binding was found to result in significant avidity gains and up to 17-fold increased in vitro potency. These data suggest trispecific aTriFlex antibodies may support dual-targeting strategies to redirect NK cell cytotoxicity with increased selectivity to enable targeting of solid tumor antigens.


Asunto(s)
Anticuerpos Biespecíficos/biosíntesis , Anticuerpos Antineoplásicos/biosíntesis , Citotoxicidad Inmunológica , Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Receptores de IgG/inmunología , Animales , Anticuerpos Biespecíficos/genética , Anticuerpos Antineoplásicos/genética , Afinidad de Anticuerpos , Antígenos CD/genética , Antígenos CD/inmunología , Antígeno de Maduración de Linfocitos B/genética , Antígeno de Maduración de Linfocitos B/inmunología , Células CHO , Técnicas de Cocultivo , Cricetulus , Expresión Génica , Humanos , Células Asesinas Naturales/citología , Activación de Linfocitos , Cultivo Primario de Células , Unión Proteica , Receptores de IgG/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
3.
MAbs ; 7(3): 584-604, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875246

RESUMEN

To harness the potent tumor-killing capacity of T cells for the treatment of CD19(+) malignancies, we constructed AFM11, a humanized tetravalent bispecific CD19/CD3 tandem diabody (TandAb) consisting solely of Fv domains. The molecule exhibits good manufacturability and stability properties. AFM11 has 2 binding sites for CD3 and 2 for CD19, an antigen that is expressed from early B cell development through differentiation into plasma cells, and is an attractive alternative to CD20 as a target for the development of therapeutic antibodies to treat B cell malignancies. Comparison of the binding and cytotoxicity of AFM11 with those of a tandem scFv bispecific T cell engager (BiTE) molecule targeting the same antigens revealed that AFM11 elicited more potent in vitro B cell lysis. Though possessing high affinity to CD3, the TandAb mediates serial-killing of CD19(+) cells with little dependence of potency or efficacy upon effector:target ratio, unlike the BiTE. The advantage of the TandAb over the BiTE was most pronounced at lower effector:target ratios. AFM11 mediated strictly target-dependent T cell activation evidenced by CD25 and CD69 induction, proliferation, and cytokine release, notwithstanding bivalent CD3 engagement. In a NOD/scid xenograft model, AFM11 induced dose-dependent growth inhibition of Raji tumors in vivo, and radiolabeled TandAb exhibited excellent localization to tumor but not to normal tissue. After intravenous administration in mice, half-life ranged from 18.4 to 22.9 h. In a human ex vivo B-cell chronic lymphocytic leukemia study, AFM11 exhibited substantial cytotoxic activity in an autologous setting. Thus, AFM11 may represent a promising therapeutic for treatment of CD19(+) malignancies with an advantageous safety risk profile and anticipated dosing regimen.


Asunto(s)
Anticuerpos Biespecíficos/farmacología , Anticuerpos Antineoplásicos/farmacología , Antígenos CD19/inmunología , Complejo CD3/inmunología , Neoplasias Experimentales/tratamiento farmacológico , Anticuerpos de Cadena Única/farmacología , Animales , Anticuerpos Biespecíficos/química , Anticuerpos Biespecíficos/inmunología , Anticuerpos Antineoplásicos/química , Anticuerpos Antineoplásicos/inmunología , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Células Jurkat , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Chem Biol ; 11(4): 292-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25686372

RESUMEN

In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond. These proteins include numerous bacterial virulence factors, and thus bacterial enzymes that promote disulfide bond formation represent targets for compounds inhibiting bacterial virulence. Here, we describe a new target- and cell-based screening methodology for identifying compounds that inhibit the disulfide bond-forming enzymes Escherichia coli DsbB (EcDsbB) or Mycobacterium tuberculosis VKOR (MtbVKOR), which can replace EcDsbB, although the two are not homologs. Initial screening of 51,487 compounds yielded six specifically inhibiting EcDsbB. These compounds share a structural motif and do not inhibit MtbVKOR. A medicinal chemistry approach led us to select related compounds, some of which are much more effective DsbB inhibitors than those found in the screen. These compounds inhibit purified DsbB and prevent anaerobic growth of E. coli. Furthermore, these compounds inhibit all but one of the DsbBs of nine other Gram-negative pathogenic bacteria tested.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Escherichia coli/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/química , Mycobacterium tuberculosis/metabolismo , Agar/química , Antibacterianos/química , Dominio Catalítico , Química Farmacéutica/métodos , Técnicas Químicas Combinatorias , Disulfuros , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Transporte de Electrón , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/metabolismo , Conformación Proteica , Proteína Disulfuro Isomerasas/antagonistas & inhibidores , Proteína Disulfuro Isomerasas/química , Pseudomonas aeruginosa/metabolismo
5.
Future Oncol ; 8(6): 687-95, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22764766

RESUMEN

Tandem diabodies (TandAbs) are tetravalent bispecific molecules comprised of antibody variable domains with two binding sites for each antigen. RECRUIT-TandAbs can simultaneously engage an immune system effector cell, such as a natural killer cell or a cytotoxic T cell, and an antigen expressed specifically on a cancer cell, thus leading to killing of the cancer cell. Recruitment of immune effector cells is highly specific and mediated via binding of the TandAb to molecules expressed on the surface of these cells. Furthermore, the absence of an Fc domain allows TandAbs to avoid certain IgG-mediated side effects. With a molecular weight of approximately 110 kDa, TandAbs are far above the first-pass renal clearance limit, offering a pharmacokinetic advantage compared with smaller bispecific antibody formats. This article reviews the RECRUIT-TandAb technology and the therapeutic potential of these molecules.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Anticuerpos Biespecíficos/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Complejo CD3/inmunología , Complejo CD3/metabolismo , Humanos , Región Variable de Inmunoglobulina/química , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Antígeno Ki-1/inmunología , Antígeno Ki-1/metabolismo , Células Asesinas Naturales/inmunología , Péptidos/inmunología , Péptidos/metabolismo , Péptidos/uso terapéutico , Linfocitos T Citotóxicos/inmunología
6.
J Bacteriol ; 193(18): 4588-97, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21742866

RESUMEN

TrbB, a periplasmic protein encoded by the conjugative plasmid F, has a predicted thioredoxin-like fold and possesses a C-X-X-C redox active site motif. TrbB may function in the conjugative process by serving as a disulfide bond isomerase, facilitating proper folding of a subset of F-plasmid-encoded proteins in the periplasm. Previous studies have demonstrated that a ΔtrbB F plasmid in Escherichia coli lacking DsbC(E.coli), its native disulfide bond isomerase, experiences a 10-fold decrease in mating efficiency but have not provided direct evidence for disulfide bond isomerase activity. Here we demonstrate that trbB can partially restore transfer of a variant of the distantly related R27 plasmid when both chromosomal and plasmid genes encoding disulfide bond isomerases have been disrupted. In addition, we show that TrbB displays both disulfide bond isomerase and reductase activities on substrates not involved in the conjugative process. Unlike canonical members of the disulfide bond isomerase family, secondary structure predictions suggest that TrbB lacks both an N-terminal dimerization domain and an α-helical domain found in other disulfide bond isomerases. Phylogenetic analyses support the conclusion that TrbB belongs to a unique family of plasmid-based disulfide isomerases. Interestingly, although TrbB diverges structurally from other disulfide bond isomerases, we show that like those isomerases, TrbB relies on DsbD from E. coli for maintenance of its C-X-X-C redox active site motif.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Factor F , Oxidorreductasas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Tiorredoxinas/metabolismo , Conjugación Genética , Escherichia coli/genética , Oxidación-Reducción , Filogenia , Proteína Disulfuro Isomerasas/química , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido
7.
Biochemistry ; 49(41): 8922-8, 2010 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-20873718

RESUMEN

Thioredoxin-1 from Escherichia coli has frequently been used as a model substrate in protein folding studies. However, for reasons of convenience, these studies have focused largely on oxidized thioredoxin and not on reduced thioredoxin, the more physiologically relevant species. Here we describe the first extensive characterization of the refolding kinetics and conformational thermodynamics of reduced thioredoxin. We have previously described a genetic screen that yielded mutant thioredoxin proteins that fold more slowly in both the oxidized and reduced forms. In this study, we apply our more detailed analysis of reduced thioredoxin folding to a larger number of folding mutants that includes those obtained from continuation of the genetic screen. We have identified mutant proteins that display folding defects specifically in the reduced state but not the oxidized state. Some of these substitutions represent unusual folding mutants in that they result in semiconservative substitutions at solvent-exposed positions in the folded conformation and do not appear to affect the conformational stability of the protein. Further, the genetic selection yields mutants at only a limited number of sites, pointing to perhaps the most critical amino acids in the folding pathway and underscoring, in particular, the role of the carboxy-terminal amino acids in the folding of thioredoxin. Our results demonstrate the importance of studying the physiologically relevant folding species.


Asunto(s)
Escherichia coli K12/enzimología , Proteínas de Escherichia coli/química , Pliegue de Proteína , Tiorredoxinas/química , Sustitución de Aminoácidos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Cinética , Mutación Missense , Termodinámica , Tiorredoxinas/genética
8.
Mol Microbiol ; 75(1): 13-28, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19968787

RESUMEN

Current dogma dictates that bacterial proteins with misoxidized disulfide bonds are shuffled into correctly oxidized states by DsbC. There are two proposed mechanisms for DsbC activity. The first involves a DsbC-only model of substrate disulfide rearrangement. The second invokes cycles of reduction and oxidation of substrate disulfide bonds by DsbC and DsbA respectively. Here, we addressed whether the second mechanism is important in vivo by identifying whether a periplasmic reductase could complement DsbC. We screened for naturally occurring periplasmic reductases in Bacteroides fragilis, a bacterium chosen because we predicted it encodes reductases and has a reducing periplasm. We found that the B. fragilis periplasmic protein TrxP has a thioredoxin fold with an extended N-terminal region; that it is a very active reductase but a poor isomerase; and that it fully complements dsbC. These results provide direct in vivo evidence that correctly folded protein is achievable via cycles of oxidation and reduction.


Asunto(s)
Bacteroides fragilis/enzimología , Oxidorreductasas/metabolismo , Proteínas Periplasmáticas/metabolismo , Proteína Disulfuro Isomerasas/química , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Bacteroides fragilis/química , Bacteroides fragilis/genética , Cristalografía por Rayos X , Disulfuros/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Prueba de Complementación Genética , Modelos Biológicos , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas/química , Oxidorreductasas/genética , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteína Disulfuro Isomerasas/genética , Estructura Terciaria de Proteína
9.
Proc Natl Acad Sci U S A ; 106(5): 1572-7, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19164554

RESUMEN

Organisms have evolved elaborate systems that ensure the homeostasis of the thiol redox environment in their intracellular compartments. In Escherichia coli, the cytoplasm is kept under reducing conditions by the thioredoxins with the help of thioredoxin reductase and the glutaredoxins with the small molecule glutathione and glutathione reductase. As a result, disulfide bonds are constantly resolved in this compartment. In contrast to the cytoplasm, the periplasm of E. coli is maintained in an oxidized state by DsbA, which is recycled by DsbB. Thioredoxin 1, when exported to the periplasm turns from a disulfide bond reductase to an oxidase that, like DsbA, is dependent on DsbB. In this study we set out to investigate whether a subclass of the thioredoxin superfamily, the glutaredoxins, can become disulfide bond-formation catalysts when they are exported to the periplasm. We find that glutaredoxins can promote disulfide bond formation in the periplasm. However, contrary to the behavior of thioredoxin 1 in this environment, the glutaredoxins do so independently of DsbB. Furthermore, we show that glutaredoxin 3 requires the glutathione biosynthesis pathway for its function and can oxidize substrates with only a single active-site cysteine. Our data provides in vivo evidence suggesting that oxidized glutathione is present in the E. coli periplasm in biologically significant concentrations.


Asunto(s)
Disulfuros/metabolismo , Escherichia coli/metabolismo , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Periplasma/metabolismo , Biocatálisis , Citoplasma/metabolismo , Oxidación-Reducción
10.
Methods Enzymol ; 421: 68-83, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17352916

RESUMEN

The experimental problems associated with in vivo studies of essential proteins or integral membrane proteins have triggered geneticists to generate novel approaches that have often led to insights of general relevance (Shuman and Silhavy, 2003). In order to extend the experimental portfolio, we developed target-directed proteolysis (TDP), an in vivo method allowing structural and functional characterization of target proteins in living cells. TDP is based on the activity of the highly sequence-specific NIa protease from tobacco etch virus. When its recognition site of seven residues is engineered into target proteins and NIa protease is expressed under tight promoter control, substrates can be conditionally processed while other cellular proteins remain unaffected. Applications include conditional inactivation as well as functional characterization of target proteins.


Asunto(s)
Endopeptidasas/metabolismo , Proteínas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Elementos Transponibles de ADN , Endopeptidasas/genética , Hidrólisis , Proteínas/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
11.
Proc Natl Acad Sci U S A ; 100(23): 13231-4, 2003 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-14597695

RESUMEN

Complex secretion machineries mediate protein translocation across cellular membranes. These machines typically recognize their substrates via signal sequences, which are required for proper targeting to the translocon. We report that during posttranslational secretion the widely conserved targeting factor SecA performs a quality-control function that is based on a general chaperone activity. This quality-control mechanism involves assisted folding of signal sequenceless proteins, thereby excluding them from the secretion process. These results suggest that SecA channels proteins into one of two key pathways, posttranslational secretion or folding in the cytoplasm. Implications of this finding for intracellular protein localization are discussed.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Proteínas Bacterianas , Proteínas de Escherichia coli/fisiología , Proteínas de Transporte de Membrana/fisiología , Adenosina Trifosfatasas/metabolismo , Fosfatasa Alcalina , Amilasas/química , Citrato (si)-Sintasa/química , Quinasas Ciclina-Dependientes/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/metabolismo , Pliegue de Proteína , Transporte de Proteínas , Canales de Translocación SEC , Proteína SecA , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA