Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 358: 142227, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704046

RESUMEN

The widespread detection of perfluorooctanoic acid (PFOA) in the environment has raised significant concerns. The standard PFOA analytical method relies on expensive solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) instruments, making routine use prohibitive. We herein proposed a cost-effective yet novel enrichment method for determining PFOA at ng L-1 level. This method entailed a two-step sample preparation process: firstly, PFOA was extracted and enriched using a forward-extraction under acidic conditions, followed by a backward-extraction and enrichment step utilizing alkaline water. The enriched samples were subsequently subjected to a common ion chromatography (IC). Results reveal that maintaining a forward-extraction pH below its pKa value (2.8) is essential, as protonated PFOA proves effective in enhancing the enrichment factor (EF). The challenge lied in driving PFOA from forward-extractant to aqueous backward-extractant due to the decreased hydrophobicity of deprotonated PFOA (log Kow2 = 1.0). In addition, we found that evaporating forward-extractant with alkaline backward-extractant (containing 5% methanol) reduced potential analytical uncertainties associated with PFOA evaporation and sorption. Under optimal conditions, the method achieved a detection limit of 9.2 ng L-1 and an impressive EF value of 719. Comparison with SPE-LC-MS/MS confirmed the proposed method as a promising alternative for PFOA determination. Although initially targeted for PFOA, the novel methodology is likely applicable to preconcentration of other poly-fluoroalkyl substances.


Asunto(s)
Caprilatos , Fluorocarburos , Extracción Líquido-Líquido , Espectrometría de Masas en Tándem , Contaminantes Químicos del Agua , Caprilatos/análisis , Caprilatos/química , Fluorocarburos/análisis , Fluorocarburos/aislamiento & purificación , Fluorocarburos/química , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas en Tándem/métodos , Extracción Líquido-Líquido/métodos , Cromatografía Liquida/métodos , Extracción en Fase Sólida/métodos , Agua/química , Monitoreo del Ambiente/métodos
2.
J Hazard Mater ; 470: 134194, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583196

RESUMEN

The escalating prevalence of nanoplastics contamination in environmental ecosystems has emerged as a significant health hazard. Conventional analytical methods are suboptimal, hindered by their inefficiency in analyzing nanoplastics at low concentrations and their time-intensive processes. In this context, we have developed an innovative approach that employs luminescent metal-phenolic networks (L-MPNs) coupled with surface-enhanced Raman spectroscopy (SERS) to separate and label nanoplastics, enabling rapid, sensitive and quantitative detection. Our strategy utilizes L-MPNs composed of zirconium ions, tannic acid, and rhodamine B to uniformly label nanoplastics across a spectrum of sizes (50-500 nm) and types (e.g., polystyrene, polymethyl methacrylate, polylactic acid). Rhodamine B (RhB) functions as a Raman reporter within these L-MPNs-based SERS tags, providing the requisite sensitivity for trace measurement of nanoplastics. Moreover, the labeling with L-MPNs aids in the efficient separation of nanoplastics from liquid media. Utilizing a portable Raman instrument, our methodology offers cost-effective, swift, and field-deployable detection capabilities, with excellent sensitivity in nanoplastic analysis and a detection threshold as low as 0.1 µg/mL. Overall, this study proposes a highly promising strategy for the robust and sensitive analysis of a broad spectrum of particle analytes, underscored by the effective labeling performance of L-MPNs when coupled with SERS techniques.

3.
Water Res ; 255: 121529, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554630

RESUMEN

This study proposes an integrated approach that combines ion-exchange (IX) and electrochemical technologies to tackle problems associated with PFAS contamination. Our investigation centers on evaluating the recovery and efficiency of IX/electrochemical systems in the presence of five different salts, spanning dosages from 0.1 % to 8 %. The outcomes reveal a slight superiority for NaCl within the regeneration system, with sulfate and bicarbonate also showing comparable efficacy. Notably, the introduction of chloride ion (Cl-) into the electrochemical system results in substantial generation of undesirable chlorate (ClO3-) and perchlorate (ClO4-) by-products, accounting for ∼18 % and ∼81 % of the consumed Cl-, respectively. Several agents, including H2O2, KI, and Na2S2O3, exhibited effective mitigation of ClO3- and ClO4- formation. However, only H2O2 demonstrated a favorable influence on the degradation and defluorination of PFOA. The addition of 0.8 M H2O2 resulted in the near-complete removal of ClO3- and ClO4-, accompanied by 1.3 and 2.2-fold enhancements in the degradation and defluorination of PFOA, respectively. Furthermore, a comparative analysis of different salts in the electrochemical system reveals that Cl- and OH- ions exhibit slower performance, possibly due to competitive interactions with PFOA on the anode's reactive sites. In contrast, sulfate and bicarbonate salts consistently demonstrate robust decomposition efficiencies. Despite the notable enhancement in IX regeneration efficacy facilitated by the presence of methanol, particularly for PFAS-specific resins, this enhancement comes at the cost of reduced electrochemical decomposition of all PFAS. The average decay rate ratio of all PFAS in the presence of 50 % methanol, compared to its absence, falls within the range of 0.11-0.39. In conclusion, the use of 1 % Na2SO4 salt stands out as a favorable option for the integrated IX/electrochemical process. This choice not only eliminates the need to introduce an additional chemical (e.g., H2O2) into the wastewater stream, but also ensures both satisfactory regeneration recovery and efficiency in the decomposition process through electrochemical treatment.

4.
J Hazard Mater ; 429: 128389, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35236042

RESUMEN

Quantifying total organic fluorine (TOF) in water is vital in monitoring the occurrence and persistence of all fluorine-containing organic compounds in the environment, while currently most studies focus on analyzing individual fluorine-containing organic compounds. To fill the technology gap, we herein proposed to convert TOF completely into fluoride with vacuum ultraviolet (VUV) photolysis, followed by analysis of fluoride with ion chromatography. Results showed that the tailored VUV photoreactor achieved satisfying recoveries of fluorine from ten model TOF compounds not only in ultrapure water (83.9 ± 2.0% to 109.4 ± 0.8%) but also in real water samples (92.1 ± 1.0%-106.2 ± 15.7%). Unlike other ultraviolet-based processes that favor alkaline conditions, this VUV process preferred either neutral or acidic conditions to defluorinate selected compounds. While the mechanisms remain to be explored in the future, it has been evidenced that the photo-degradation and photo-defluorination rates of these TOF compounds varied significantly among compounds and operation conditions. The method obtained a method detection limit (MDL) of 0.15 µg-F/L, which is lower than the MDLs of many other TOF analytical methods, along with excellent calibration curves for concentrations ranging from 0.01 to 10.0 mg-F/L. Notably, minimizing fluoride in sample prior to photoconversion was necessary to avoid subtraction-induced errors for TOF measurement, especially when the fluoride/TOF ratio was high. The robust VUV is also green for sample pretreatment due to its unreliance of chemicals or additives.


Asunto(s)
Flúor , Contaminantes Químicos del Agua , Fluoruros , Flúor/análisis , Fotólisis , Rayos Ultravioleta , Vacio , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...