Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pathol Res Pract ; 261: 155478, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079383

RESUMEN

Myelodysplastic syndrome (MDS) holds a unique position among blood cancers, encompassing a spectrum of blood-related disorders marked by impaired maturation of blood cell precursors, bone marrow abnormalities, genetic instability, and a higher likelihood of progressing to acute myeloid leukemia. MicroRNAs (miRNAs), short non-coding RNA molecules typically 18-24 nucleotides in length, are known to regulate gene expression and contribute to various biological processes, including cellular differentiation and programmed cell death. Additionally, miRNAs are involved in many aspects of cancer development, influencing cell growth, transformation, and apoptosis. In this study, we explore the impact of microRNAs on cellular apoptosis in MDS.


Asunto(s)
Apoptosis , MicroARNs , Síndromes Mielodisplásicos , Transducción de Señal , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Síndromes Mielodisplásicos/metabolismo , Humanos , Apoptosis/genética , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal/genética
2.
Ann Med Surg (Lond) ; 86(5): 2759-2776, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38694398

RESUMEN

The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA