Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(11)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38002351

RESUMEN

Azacarbazoles have attracted significant interest due to their valuable properties, such as anti-pathogenic and antitumor activity. In this study, a series of structurally related tricyclic benzo[4,5]- and tertacyclic naphtho[2',1':4,5]imidazo[1,2-c]pyrimidinone derivatives with one or two positively charged tethers were synthesized and evaluated for anti-proliferative activity. Lead tetracyclic derivative 5b with two amino-bearing arms inhibited the metabolic activity of A549 lung adenocarcinoma cells with a CC50 value of 3.6 µM, with remarkable selectivity (SI = 17.3) over VA13 immortalized fibroblasts. Cell-cycle assays revealed that 5b triggers G2/M arrest without signs of apoptosis. A study of its interaction with various DNA G4s and duplexes followed by dual luciferase and intercalator displacement assays suggests that intercalation, rather than the modulation of G4-regulated oncogene expression, might contribute to the observed activity. Finally, a water-soluble salt of 5b was shown to cause no acute toxic effects, changes in mice behavior, or any decrease in body weight after a 72 h treatment at concentrations up to 20 mg/kg. Thus, 5b is a promising candidate for studies in vivo; however, further investigations are needed to elucidate its molecular target(s).


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Animales , Ratones , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular , Estructura Molecular
2.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834006

RESUMEN

Emerging and re-emerging viruses periodically cause outbreaks and epidemics around the world, which ultimately lead to global events such as the COVID-19 pandemic. Thus, the urgent need for new antiviral drugs is obvious. Over more than a century of antiviral development, nucleoside analogs have proven to be promising agents against diversified DNA and RNA viruses. Here, we present the synthesis and evaluation of the antiviral activity of nucleoside analogs and their deglycosylated derivatives based on a hydroxybenzo[4,5]imidazo[1,2-c]pyrimidin-1(2H)-one scaffold. The antiviral activity was evaluated against a panel of structurally and phylogenetically diverse RNA and DNA viruses. The leader compound showed micromolar activity against representatives of the family Coronaviridae, including SARS-CoV-2, as well as against respiratory syncytial virus in a submicromolar range without noticeable toxicity for the host cells. Surprisingly, methylation of the aromatic hydroxyl group of the leader compound resulted in micromolar activity against the varicella-zoster virus without any significant impact on cell viability. The leader compound was shown to be a weak inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase. It also inhibited biocondensate formation important for SARS-CoV-2 replication. The active compounds may be considered as a good starting point for further structure optimization and mechanistic and preclinical studies.


Asunto(s)
Nucleósidos , Virus ARN , Humanos , Nucleósidos/farmacología , Nucleósidos/química , Antivirales/farmacología , Antivirales/química , ARN Viral , Pandemias , SARS-CoV-2 , ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...