Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(38): e202203066, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35672261

RESUMEN

The detection and quantification of exogenous metal complexes are crucial to understanding their activity in intricate biological media. MnII complexes are difficult to detect and quantify because of low association constants, and high lability. The superoxide dismutase (SOD) mimic (or mimetic) labelled Mn1 is based on a 1,2-di-aminoethane functionalized with imidazole and phenolate and has good intrinsic anti-superoxide, antioxidant and anti-inflammatory activities in lipopolysaccharide (LPS)-activated intestinal epithelial HT29-MD2 cells, similar to that of its propylated analogue labelled Mn1P. Ion mobility spectrometry-mass spectrometry (IMS-MS) is a powerful technique for separating low molecular weight (LMW) metal complexes and can even separate complexes with the same ligand but bound to different divalent metal cations with similar ionic radii. We demonstrated the intracellular presence of the Mn1 and Mn1P complexes, at least partly intact, in lysates of cells incubated with the complexes and estimated the intracellular Mn1P concentration using a Co-13 C6 analogue.


Asunto(s)
Complejos de Coordinación , Manganeso , Espectrometría de Movilidad Iónica , Manganeso/química , Espectrometría de Masas , Metales , Peso Molecular , Superóxido Dismutasa/metabolismo
2.
Front Neurosci ; 16: 874768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573317

RESUMEN

Friedreich's ataxia (FRDA) is an autosomal recessive disease caused by an intronic guanine-adenine-adenine (GAA) triplet expansion in the frataxin (FXN) gene, which leads to reduced expression of full-length frataxin (1-210) also known as isoform 1. Full-length frataxin has a mitochondrial targeting sequence, which facilitates its translocation into mitochondria where it is processed through cleavage at G41-L42 and K80-S81 by mitochondrial processing (MPP) to release mitochondrial mature frataxin (81-210). Alternative splicing of FXN also leads to expression of N-terminally acetylated extra-mitochondrial frataxin (76-210) named isoform E because it was discovered in erythrocytes. Frataxin isoforms are undetectable in serum or plasma, and originally whole blood could not be used as a biomarker in brief therapeutic trials because it is present in erythrocytes, which have a half-life of 115-days and so frataxin levels would remain unaltered. Therefore, an assay was developed for analyzing frataxin in platelets, which have a half-life of only 10-days. However, our discovery that isoform E is only present in erythrocytes, whereas, mature frataxin is present primarily in short-lived peripheral blood mononuclear cells (PBMCs), granulocytes, and platelets, meant that both proteins could be quantified in whole blood samples. We now report a quantitative assay for frataxin proteoforms in whole blood from healthy controls and FRDA patients. The assay is based on stable isotope dilution coupled with immunoprecipitation (IP) and two-dimensional-nano-ultrahigh performance liquid chromatography/parallel reaction monitoring/high resolution mass spectrometry (2D-nano-UHPLC-PRM/HRMS). The lower limit of quantification was 0.5 ng/mL for each proteoform and the assays had 100% sensitivity and specificity for discriminating between healthy controls (n = 11) and FRDA cases (N = 100 in year-1, N = 22 in year-2,3). The mean levels of mature frataxin in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 7.5 ± 1.5 ng/mL and 2.1 ± 1.2 ng/mL, respectively. The mean levels of isoform E in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 26.8 ± 4.1 ng/mL and 4.7 ± 3.3 ng/mL, respectively. The mean levels of total frataxin in whole blood from healthy controls and homozygous FRDA patients were significantly different (p < 0.0001) at 34.2 ± 4.3 ng/mL and 6.8 ± 4.0 ng/mL, respectively. The assay will make it possible to rigorously monitor the natural history of the disease and explore the potential role of isoform E in etiology of the disease. It will also facilitate the assessment of therapeutic interventions (including gene therapy approaches) that attempt to increase frataxin protein expression as a treatment for this devastating disease.

3.
NPJ Biofilms Microbiomes ; 6(1): 24, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532998

RESUMEN

The zoonotic bacterium Leptospira interrogans is the aetiological agent of leptospirosis, a re-emerging infectious disease that is a growing public health concern. Most human cases of leptospirosis result from environmental infection. Biofilm formation and its contribution to the persistence of virulent leptospires in the environment or in the host have scarcely been addressed. Here, we examined spatial and time-domain changes in biofilm production by L. interrogans. Our observations showed that biofilm formation in L. interrogans is a highly dynamic process and leads to a polarized architecture. We notably found that the biofilm matrix is composed of extracellular DNA, which enhances the biofilm's cohesiveness. By studying L. interrogans mutants with defective diguanylate cyclase and phosphodiesterase genes, we show that biofilm production is regulated by intracellular levels of bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) and underpins the bacterium's ability to withstand a wide variety of simulated environmental stresses. Our present results show how the c-di-GMP pathway regulates biofilm formation by L. interrogans, provide insights into the environmental persistence of L. interrogans and, more generally, highlight leptospirosis as an environment-borne threat to human health.


Asunto(s)
Biopelículas/crecimiento & desarrollo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/genética , Leptospira interrogans/fisiología , Hidrolasas Diéster Fosfóricas/genética , Liasas de Fósforo-Oxígeno/genética , Animales , Proteínas Bacterianas/genética , Zoonosis Bacterianas/microbiología , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Mutación , Análisis Espacio-Temporal , Estrés Fisiológico
5.
Talanta ; 206: 120171, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31514875

RESUMEN

The mapping of post-translational modifications (PTMs) of proteins can be addressed by bottom-up proteomics strategy using proteases to achieve the enzymatic digestion of the biomolecule. Glycosylation is one of the most challenging PTM to characterize due to its large structural heterogeneity. In this work, two Immobilized Enzyme Reactors (IMERs) based on trypsin and pepsin protease were used for the first time to fasten and improve the reliability of the specific mapping of the N-glycosylation heterogeneity of glycoproteins. The performance of the supports was evaluated with the digestion of human Chorionic Gonadotropin hormone (hCG), a glycoprotein characterized by four N- and four O-glycosylation sites, prior to the analysis of the digests by nanoliquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS). Firstly, the repeatability of the nanoLC-MS/MS was evaluated and a method to control the identification of the identified glycans was developed to validate them regarding the retention time of glycopeptides in reversed phase nanoLC separation. The repeatability of the digestion with trypsin-based IMER was evaluated on the same hCG batch and on three independent batches with common located glycans up to 75%. Then, the performance of the IMER digestions was compared to in-solution digestions to evaluate the qualitative mapping of the glycosylation. It has given rise to 42 out of 45 common glycans between both digestions modes. For the first time, the complementarity of trypsin and pepsin was illustrated for the glycosylation mapping as trypsin led to identifications on 2 out of 4 glycosylation site while pepsin was informative on the 4 glycosylation site. The potential of IMERs for the study of the glycosylation of a protein was illustrated with the comparison of two hCG-based drugs, Ovitrelle® and Pregnyl®.


Asunto(s)
Cromatografía Liquida/métodos , Enzimas Inmovilizadas/química , Glicopéptidos/análisis , Animales , Bovinos , Gonadotropina Coriónica/análisis , Gonadotropina Coriónica/química , Cromatografía Liquida/instrumentación , Glicopéptidos/química , Glicosilación , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Pepsina A/química , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química , Procesamiento Proteico-Postraduccional , Proteolisis , Sefarosa/química , Porcinos , Espectrometría de Masas en Tándem/métodos , Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...