Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes ; 72(10): 1397-1408, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506328

RESUMEN

Exercise increases muscle glucose uptake independently of insulin signaling and represents a cornerstone for the prevention of metabolic disorders. Pharmacological activation of the exercise-responsive AMPK in skeletal muscle has been proven successful as a therapeutic approach to treat metabolic disorders by improving glucose homeostasis through the regulation of muscle glucose uptake. However, conflicting observations cloud the proposed role of AMPK as a necessary regulator of muscle glucose uptake during exercise. We show that glucose uptake increases in human skeletal muscle in the absence of AMPK activation during exercise and that exercise-stimulated AMPKγ3 activity strongly correlates to muscle glucose uptake in the postexercise period. In AMPKγ3-deficient mice, muscle glucose uptake is normally regulated during exercise and contractions but impaired in the recovery period from these stimuli. Impaired glucose uptake in recovery from exercise and contractions is associated with a lower glucose extraction, which can be explained by a diminished permeability to glucose and abundance of GLUT4 at the muscle plasma membrane. As a result, AMPKγ3 deficiency impairs muscle glycogen resynthesis following exercise. These results identify a physiological function of the AMPKγ3 complex in human and rodent skeletal muscle that regulates glucose uptake in recovery from exercise to recapture muscle energy stores. ARTICLE HIGHLIGHTS: Exercise-induced activation of AMPK in skeletal muscle has been proposed to regulate muscle glucose uptake in recovery from exercise. This study investigated whether the muscle-specific AMPKγ3-associated heterotrimeric complex was involved in regulating muscle glucose metabolism in recovery from exercise. The findings support that exercise-induced activation of the AMPKγ3 complex in human and mouse skeletal muscle enhances glucose uptake in recovery from exercise via increased translocation of GLUT4 to the plasma membrane. This work uncovers the physiological role of the AMPKγ3 complex in regulating muscle glucose uptake that favors replenishment of the muscle cellular energy stores.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ejercicio Físico , Glucosa , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Glucosa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno/metabolismo , Insulina/metabolismo , Músculo Esquelético/metabolismo , Ejercicio Físico/fisiología
2.
Diabetes ; 72(7): 857-871, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074686

RESUMEN

The ability of insulin to stimulate glucose uptake in skeletal muscle is important for whole-body glycemic control. Insulin-stimulated skeletal muscle glucose uptake is improved in the period after a single bout of exercise, and accumulating evidence suggests that phosphorylation of TBC1D4 by the protein kinase AMPK is the primary mechanism responsible for this phenomenon. To investigate this, we generated a TBC1D4 knock-in mouse model with a serine-to-alanine point mutation at residue 711 that is phosphorylated in response to both insulin and AMPK activation. Female TBC1D4-S711A mice exhibited normal growth and eating behavior as well as intact whole-body glycemic control on chow and high-fat diets. Moreover, muscle contraction increased glucose uptake, glycogen utilization, and AMPK activity similarly in wild-type and TBC1D4-S711A mice. In contrast, improvements in whole-body and muscle insulin sensitivity after exercise and contractions were only evident in wild-type mice and occurred concomitantly with enhanced phosphorylation of TBC1D4-S711. These results provide genetic evidence to support that TBC1D4-S711 serves as a major point of convergence for AMPK- and insulin-induced signaling that mediates the insulin-sensitizing effect of exercise and contractions on skeletal muscle glucose uptake.


Asunto(s)
Glucosa , Insulina , Femenino , Ratones , Animales , Insulina/farmacología , Insulina/metabolismo , Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Músculo Esquelético/metabolismo , Insulina Regular Humana/farmacología , Fosforilación , Contracción Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...