Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(14): e34957, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149077

RESUMEN

Phycoerythrin (PE) extraction from Porphyridium sp. was studied employing ultrasound-assisted extraction combined with aqueous mixtures of two imidazolium-based ionic liquids (ILs) simultaneously, marking a significant novelty. A face-centred central composite design and response surface optimised PE yield (EPE), considering the effects of ionic liquid concentration (IL), [Emim][EtSO4]/[Bmim][EtSO4] mass ratio (E/B), biomass concentration (BM), and time (t). Improvements in EPE by 300 % and 115 % were achieved compared to a phosphate buffer solution and the freeze-thaw method, respectively. Temperature and pH effects were examined independently, leading to the determination of optimal operating conditions: BM = 10 mg mL-1, IL = 18.6 wt%, E/B = 0.78/0.22, t = 10 min, T = 35 °C, and pH = 7.5. Results indicated the potential for reusing the ILs for at least five consecutive extraction cycles, maintaining an EPE of 94.2 % compared to fresh ones. This underscores the success and innovation of the developed technology in enhancing PE extraction from Porphyridium sp.

2.
Ind Eng Chem Res ; 62(12): 5190-5198, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37014358

RESUMEN

A new biorefinery from Arthrospira platensis was proposed to obtain phycocyanin (PC) and a biocrude by hydrothermal liquefaction (HTL). PC is a high-added-value phycobiliprotein widely used as a food colorant and in the nutraceutical and pharmaceutical industries. However, the use of conventional solvents in the extraction process and the purity grade of the extract are shortcomings in bioproduct production. PC was extracted using a reusable ionic liquid [EMIM][EtSO4], achieving a PC purity of the lowest commercial grade. Therefore, two downstream processes were applied: (1) dialysis + precipitation and (2) aqueous two-phase system (ATPS) + dialysis + precipitation. After the second purification process, the PC purity increased remarkably to reach the analytical grade for pharmaceutical and nutraceutical applications. The waste biomass (WB) obtained in the PC extraction was valorized by hydrothermal liquefaction (HTL) to produce a biocrude. The biocrude yield and composition remarkably enhanced using isopropanol at 350 °C as a cosolvent.

3.
Sci Total Environ ; 840: 156675, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35716747

RESUMEN

Phytoremediation is an in-situ remediation technology based on the ability of plants to fix pollutants from the soil. In this sense, plants such as Festuca arundinacea are a promising for heavy metal removal in contaminated soils. The present work studies phytoremediation for Pb removal from a contaminated soil located in Spain using F. arundinacea by applying the Life Cycle Assessment (LCA) approach. Two different options for biomass management were assessed: direct disposal in a security landfill (case 1A) and energy recovery (case 1B). For the latter option, cogeneration was simulated using SuperPro Designer 9.5. In addition, traditional treatments such as soil washing (case 2) and excavation + landfill (case 3) were evaluated in terms of environmental impacts by LCA. The former was simulated using SuperPro Designer 9.5, whereas data from literature were used for the latter to perform the LCA. Results showed that biomass disposal in a landfill was the most important contributor to the overall impact in case 1A. In contrast, biomass conditioning and cogeneration were the main steps responsible for environmental impacts in case 1B. Comparing cases 1A and 1B, the energy recovery from biomass was superior to direct landfill disposal, reducing the environmental impacts in most of the studied categories. Regarding the rest of the treatments, chemical production and soil disposal presented the most critical environmental burdens in cases 2 and 3, respectively. Finally, the comparison between the studied cases revealed that phytoextraction + energy recovery was the most environmentally friendly option for the studied conditions, reducing impacts by 30-100%.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Animales , Biodegradación Ambiental , Biomasa , Plomo , Estadios del Ciclo de Vida , Metales Pesados/análisis , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA