Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 206(7): 833-42, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25246613

RESUMEN

The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Fosfatasa 2/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Células HeLa , Humanos , Cinetocoros/enzimología , Fosforilación , Transporte de Proteínas
2.
J Cell Sci ; 126(Pt 15): 3429-40, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23729733

RESUMEN

Mutations in the PPP6C catalytic subunit of protein phosphatase 6 (PP6) are drivers for the development of melanoma. Here, we analyse a panel of melanoma-associated mutations in PPP6C and find that these generally compromise assembly of the PP6 holoenzyme and catalytic activity towards a model substrate. Detailed analysis of one mutant, PPP6C-H114Y, in both primary melanoma and engineered cell lines reveals it is destabilized and undergoes increased proteasome-mediated turnover. Global analysis of phosphatase substrates by mass spectrometry identifies the oncogenic kinase Aurora-A as the major PP6 substrate that is dysregulated under these conditions. Accordingly, cells lacking PPP6C or carrying the PPP6C-H114Y allele have elevated Aurora-A kinase activity and display chromosome instability with associated Aurora-A-dependent micronucleation. Chromosomes mis-segregated to these micronuclei are preferentially stained by the DNA damage marker γ-H2AX, suggesting that loss of PPP6C promotes both chromosome instability and DNA damage. These findings support the view that formation of micronuclei rather than chromosome instability alone explains how loss of PPP6C, and more generally mitotic spindle and centrosome defects, can act as drivers for genome instability in melanoma and other cancers.


Asunto(s)
Aurora Quinasa A/metabolismo , Inestabilidad Cromosómica , Daño del ADN , Melanoma/genética , Fosfoproteínas Fosfatasas/genética , Secuencia de Aminoácidos , Aurora Quinasa A/genética , Línea Celular Tumoral , Células HeLa , Humanos , Melanoma/enzimología , Melanoma/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación
3.
PLoS One ; 6(8): e23318, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21858068

RESUMEN

BACKGROUND: Gas1 (growth arrest-specific 1) gene is known to inhibit cell proliferation in a variety of models, but its possible implication in regulating quiescence in adult tissues has not been examined to date. The knowledge of how Gas1 is regulated in quiescence may contribute to understand the deregulation occurring in neoplastic diseases. METHODOLOGY/PRINCIPAL FINDINGS: Gas1 expression has been studied in quiescent murine liver and during the naturally synchronized cell proliferation after partial hepatectomy. Chromatin immunoprecipitation at nucleosomal resolution (Nuc-ChIP) has been used to carry out the study preserving the in vivo conditions. Transcription has been assessed at real time by quantifying the presence of RNA polymerase II in coding regions (RNApol-ChIP). It has been found that Gas1 is expressed not only in quiescent liver but also at the cell cycle G(1)/S transition. The latter expression peak had not been previously reported. Two nucleosomes, flanking a nucleosome-free region, are positioned close to the transcription start site. Both nucleosomes slide in going from the active to the inactive state and vice versa. Nuc-ChIP analysis of the acquisition of histone epigenetic marks show distinctive features in both active states: H3K9ac and H3K4me2 are characteristic of transcription in G(0) and H4R3me2 in G(1)/S transition. Sequential-ChIP analysis revealed that the "repressing" mark H3K9me2 colocalize with several "activating" marks at nucleosome N-1 when Gas1 is actively transcribed suggesting a greater plasticity of epigenetic marks than proposed until now. The recruitment of chromatin-remodeling or modifying complexes also displayed distinct characteristics in quiescence and the G(1)/S transition. CONCLUSIONS/SIGNIFICANCE: The finding that Gas1 is transcribed at the G(1)/S transition suggests that the gene may exert a novel function during cell proliferation. Transcription of this gene is modulated by specific "activating" and "repressing" epigenetic marks, and by chromatin remodeling and histone modifying complexes recruitment, at specific nucleosomes in Gas1 promoter.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proliferación Celular , Epigénesis Genética , Regulación de la Expresión Génica , Hígado/metabolismo , Nucleosomas/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular/metabolismo , Inmunoprecipitación de Cromatina , Fase G1/genética , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Perfilación de la Expresión Génica/métodos , Hepatectomía/métodos , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Inmunohistoquímica , Hígado/citología , Hígado/cirugía , Metilación , Ratones , Nucleosomas/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fase S/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética
4.
J Cell Mol Med ; 12(2): 679-89, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18021315

RESUMEN

Mutations in the mitochondrial protein GDAP1 are the cause of Charcot-Marie-Tooth type 4A disease (CMT4A), a severe form of peripheral neuropathy associated with either demyelinating, axonal or intermediate phenotypes. GDAP1 is located in the outer mitochondrial membrane and it seems that may be related with the mitochondrial network dynamics. We are interested to define cell expression in the nervous system and the effect of mutations in mitochondrial morphology and pathogenesis of the disease. We investigated GDAP1 expression in the nervous system and dorsal root ganglia (DRG) neuron cultures. GDAP1 is expressed in motor and sensory neurons of the spinal cord and other large neurons such as cerebellar Purkinje neurons, hippocampal pyramidal neurons, mitral neurons of the olfactory bulb and cortical pyramidal neurons. The lack of GDAP1 staining in the white matter and nerve roots suggested that glial cells do not express GDAP1. In DRG cultures satellite cells and Schwann cells were GDAP1-negative. Overexpression of GDAP1-induced fragmentation of mitochondria suggesting a role of GDAP1 in the fission pathway of the mitochondrial dynamics. Missense mutations showed two different patterns: most of them induced mitochondrial fragmentation but the T157P mutation showed an aggregation pattern. Whereas null mutations of GDAP1 should be associated with loss of function of the protein, missense mutations may act through different pathogenic mechanisms including a dominant-negative effect, suggesting that different molecular mechanisms may underlay the pathogenesis of CMT4A.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/etiología , Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Animales , Animales Recién Nacidos , Células COS , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/clasificación , Chlorocebus aethiops , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HeLa , Humanos , Inmunohistoquímica , Interneuronas/metabolismo , Ratones , Neuronas Motoras/metabolismo , Mutación Missense , Proteínas del Tejido Nervioso/genética , Neuronas Aferentes/metabolismo , Células de Purkinje/metabolismo , Células Piramidales/metabolismo , Ratas , Médula Espinal/metabolismo
5.
Hum Mol Genet ; 14(8): 1087-94, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15772096

RESUMEN

Mutations in GDAP1, the ganglioside-induced differentiation-associated protein 1 gene, cause Charcot-Marie-Tooth (CMT) type 4A, a severe autosomal recessive form of neuropathy associated with either demyelinating or axonal phenotypes. Here, we demonstrate that GDAP1 has far greater expression in neurons than in myelinating Schwann cells. We investigated cell localization of GDAP1 in a human neuroblastoma cell line by means of transient overexpression and co-localization with organelle markers in COS-7 cells and by western blot analysis of subcell fractions with anti-GDAP1 polyclonal antibodies. We observed that GDAP1 is localized in mitochondria. We also show that C-terminal transmembrane domains are necessary for the correct localization in mitochondria; however, missense mutations do not change the mitochondrial pattern of the wild-type protein. Our findings suggest that CMT4A disease is in fact a mitochondrial neuropathy mainly involving axons and represents a disease belonging to the new category of mitochondrial disorders caused by mutations in nuclear genes. We postulate that GDAP1 may be related to the maintenance of the mitochondrial network.


Asunto(s)
Mitocondrias/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Animales , Células COS , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Chlorocebus aethiops , Glutatión/metabolismo , Humanos , Mutación Missense , Proteínas del Tejido Nervioso/biosíntesis , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...