Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
J Cogn ; 7(1): 41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737819

RESUMEN

Over the past few years, several studies have explored the relationship between resting-state baseline pupil size and cognitive abilities, including fluid intelligence, working memory capacity, and attentional control. However, the results have been inconsistent. Here we present the findings from two experiments designed to replicate and expand previous research, with the aim of clarifying previous mixed findings. In both experiments, we measured baseline pupil size while participants were not engaged in any tasks, and assessed fluid intelligence using a matrix task. In one experiment we also measured working memory capacity (letter-number-sequencing task) and attentional control (attentional-capture task). We controlled for several personal and demographic variables known to influence pupil size, such as age and nicotine consumption. Our analyses revealed no relationship between resting-state pupil size (average or variability) and any of the measured constructs, neither before nor after controlling for confounding variables. Taken together, our results suggest that any relationship between resting-state pupil size and cognitive abilities is likely to be weak or non-existent.

2.
Biol Psychiatry ; 95(2): 147-160, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37661008

RESUMEN

BACKGROUND: Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure. METHODS: Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference. RESULTS: For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness. CONCLUSIONS: We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment.


Asunto(s)
Anomalías Múltiples , Deleción Cromosómica , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Cromosomas Humanos Par 15 , Variaciones en el Número de Copia de ADN
3.
Brain Behav ; 13(10): e3219, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37587620

RESUMEN

INTRODUCTION: Brain age, the estimation of a person's age from magnetic resonance imaging (MRI) parameters, has been used as a general indicator of health. The marker requires however further validation for application in clinical contexts. Here, we show how brain age predictions perform for the same individual at various time points and validate our findings with age-matched healthy controls. METHODS: We used densely sampled T1-weighted MRI data from four individuals (from two densely sampled datasets) to observe how brain age corresponds to age and is influenced by acquisition and quality parameters. For validation, we used two cross-sectional datasets. Brain age was predicted by a pretrained deep learning model. RESULTS: We found small within-subject correlations between age and brain age. We also found evidence for the influence of field strength on brain age which replicated in the cross-sectional validation data and inconclusive effects of scan quality. CONCLUSION: The absence of maturation effects for the age range in the presented sample, brain age model bias (including training age distribution and field strength), and model error are potential reasons for small relationships between age and brain age in densely sampled longitudinal data. Clinical applications of brain age models should consider of the possibility of apparent biases caused by variation in the data acquisition process.

4.
J Sport Exerc Psychol ; 45(4): 208-223, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37474118

RESUMEN

Mental effort (intensity of attention) in elite sports has remained a debated topic and a challenging phenomenon to measure. Thus, a quasi-ecological laboratory study was conducted to investigate mental effort in elite rowers as compared with a group of nonelites. Findings suggest that eye-tracking measures-specifically, blink rates and pupil size-can serve as valid indicators of mental effort in physically demanding sport tasks. Furthermore, findings contradict the notion that elite athletes spend less cognitive effort than their lower-level peers. Specifically, elites displayed similar levels of self-reported effort and performance decrement with increasing mental load and significantly more mental effort overall as measured by pupil-size increase (relative to baseline) during rowing trials as compared with the nonelites in the sample. Future studies on eye tracking in sports may include investigations of mental effort in addition to selective attention during physically demanding tasks.


Asunto(s)
Deportes , Humanos , Atletas , Atención , Pupila
5.
Hum Mov Sci ; 90: 103113, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331066

RESUMEN

The current motor literature suggests that extraneous cognitive load may affect performance and kinematics in a primary motor task. A common response to increased cognitive demand, as observed in past studies, might be to reduce movement complexity and revert to previously learned movement patterns, in line with the progression-regression hypothesis. However, according to several accounts of automaticity, motor experts should be able to cope with dual task demands without detriment to their performance and kinematics. To test this, we conducted an experiment asking elite and non-elite rowers to use a rowing ergometer under conditions of varying task load. We employed single-task conditions with low cognitive load (i.e., rowing only) and dual-task conditions with high cognitive load (i.e., rowing and solving arithmetic problems). The results of the cognitive load manipulations were mostly in line with our hypotheses. Overall, participants reduced movement complexity, for example by reverting towards tighter coupling of kinematic events, in their dual-task performance as compared to single-task performance. The between-group kinematic differences were less clear. In contradiction to our hypotheses, we found no significant interaction between skill level and cognitive load, suggesting that the rowers' kinematics were affected by cognitive load irrespective of skill level. Overall, our findings contradict several past findings and automaticity theories, and suggest that attentional resources are required for optimal sports performance.


Asunto(s)
Rendimiento Atlético , Humanos , Fenómenos Biomecánicos , Movimiento/fisiología , Ergometría , Cognición
6.
Neuroimage ; 256: 119210, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35462035

RESUMEN

The discrepancy between chronological age and the apparent age of the brain based on neuroimaging data - the brain age delta - has emerged as a reliable marker of brain health. With an increasing wealth of data, approaches to tackle heterogeneity in data acquisition are vital. To this end, we compiled raw structural magnetic resonance images into one of the largest and most diverse datasets assembled (n=53542), and trained convolutional neural networks (CNNs) to predict age. We achieved state-of-the-art performance on unseen data from unknown scanners (n=2553), and showed that higher brain age delta is associated with diabetes, alcohol intake and smoking. Using transfer learning, the intermediate representations learned by our model complemented and partly outperformed brain age delta in predicting common brain disorders. Our work shows we can achieve generalizable and biologically plausible brain age predictions using CNNs trained on heterogeneous datasets, and transfer them to clinical use cases.


Asunto(s)
Encéfalo , Redes Neurales de la Computación , Envejecimiento , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Neuroimagen
7.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33615640

RESUMEN

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Asunto(s)
Encéfalo , Variaciones en el Número de Copia de ADN , Imagen por Resonancia Magnética , Trastornos Mentales , Trastornos del Neurodesarrollo , Neuroimagen , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Humanos , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/genética , Trastornos Mentales/patología , Estudios Multicéntricos como Asunto , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología
8.
Mult Scler ; 28(4): 532-540, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34259578

RESUMEN

BACKGROUND: Brain functional connectivity (FC) in multiple sclerosis (MS) is abnormal compared to healthy controls (HCs). More longitudinal studies in MS are needed to evaluate whether FC stability is clinically relevant. OBJECTIVE: To compare functional magnetic resonance imaging (fMRI)-based FC between MS and HC, and to determine the relationship between longitudinal FC changes and structural brain damage, cognitive performance and physical disability. METHODS: T1-weighted MPRAGE and resting-state fMRI (1.5T) were acquired from 70 relapsing-remitting MS patients and 94 matched HC at baseline (mean months since diagnosis 14.0 ± 11) and from 60 MS patients after 5 years. Independent component analysis and network modelling were used to measure longitudinal FC stability and cross-sectional comparisons with HC. Linear mixed models, adjusted for age and sex, were used to calculate correlations. RESULTS: At baseline, patients with MS showed FC abnormalities both within networks and in single connections compared to HC. Longitudinal analyses revealed functional stability and no significant relationships with clinical disability, cognitive performance, lesion or brain volume. CONCLUSION: FC abnormalities occur already at the first decade of MS, yet we found no relevant clinical correlations for these network deviations. Future large-scale longitudinal fMRI studies across a range of MS subtypes and outcomes are required.


Asunto(s)
Conectoma , Esclerosis Múltiple , Encéfalo/patología , Conectoma/métodos , Estudios Transversales , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética/métodos
9.
Front Psychol ; 12: 730278, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721193

RESUMEN

Adequate emotion regulation in children is crucial for healthy development and is influenced by parent emotion socialization. The current pilot study aimed to test, for the first time in a Scandinavian population, whether an emotion-focused intervention, Tuning in to Kids (TIK), had positive effects on parent emotion-related socialization behaviors (ERSBs), and children's self-regulation, anxiety, and externalizing behavior problems. We conducted a controlled trial of the 6-week evidence-based TIK parenting program with 20 parents of preschool children aged 5-6 years and 19 wait-list controls. Assessments at baseline and 6 months after the intervention included parent-report questionnaires on parent ERSBs and child adjustment, as well as aspects of children's self-regulation assessed with two behavioral tasks, the Emotional Go/No-Go task (EGNG) and the AX-Continuous Performance Task (AX-CPT). Results showed a significant increase in reported parent emotion coaching behavior and an uncorrected significant decrease in parents' report of child externalizing problems in intervention participants compared to controls. The behavioral data showed an uncorrected significant improvement in child emotion discrimination in the control condition compared to the intervention condition, while measures of children's executive control improved from baseline to follow-up for both conditions but were not significantly different between conditions. These findings suggest that this emotion-focused parenting intervention contributed to improvement in parents' emotion coaching and their appraisal of child externalizing problems, while children's self-regulation showed mainly normative developmental improvements. Further research with a larger sample will be the next step to determine if these pilot findings are seen in an adequately powered study.

10.
Transl Psychiatry ; 11(1): 410, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326310

RESUMEN

Major mental disorders are highly prevalent and make a substantial contribution to the global disease burden. It is known that mental disorders share clinical characteristics, and genome-wide association studies (GWASs) have recently provided evidence for shared genetic factors as well. Genetic overlaps are usually identified at the single-marker level. Here, we aimed to identify genetic overlaps at the gene level between 7 mental disorders (schizophrenia, autism spectrum disorder, major depressive disorder, anorexia nervosa, ADHD, bipolar disorder and anxiety), 8 brain morphometric traits, 2 cognitive traits (educational attainment and general cognitive function) and 9 personality traits (subjective well-being, depressive symptoms, neuroticism, extraversion, openness to experience, agreeableness and conscientiousness, children's aggressive behaviour, loneliness) based on publicly available GWASs. We performed systematic conditional regression analyses to identify independent signals and select loci associated with more than one trait. We identified 48 genes containing independent markers associated with several traits (pleiotropy at the gene level). We also report 9 genes with different markers that show independent associations with single traits (allelic heterogeneity). This study demonstrates that mental disorders and related traits do show pleiotropy at the gene level as well as the single-marker level. The identification of these genes might be important for prioritizing further deep genotyping, functional studies, or drug targeting.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Depresivo Mayor , Trastornos de Ansiedad , Niño , Trastorno Depresivo Mayor/genética , Extraversión Psicológica , Estudio de Asociación del Genoma Completo , Humanos
11.
Neuropsychopharmacology ; 46(10): 1788-1801, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34035472

RESUMEN

Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.


Asunto(s)
Nootrópicos , Esquizofrenia , Cognición , Estudio de Asociación del Genoma Completo , Humanos , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Transcriptoma
12.
Transl Psychiatry ; 11(1): 182, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753722

RESUMEN

Low-frequency 1q21.1 distal deletion and duplication copy number variant (CNV) carriers are predisposed to multiple neurodevelopmental disorders, including schizophrenia, autism and intellectual disability. Human carriers display a high prevalence of micro- and macrocephaly in deletion and duplication carriers, respectively. The underlying brain structural diversity remains largely unknown. We systematically called CNVs in 38 cohorts from the large-scale ENIGMA-CNV collaboration and the UK Biobank and identified 28 1q21.1 distal deletion and 22 duplication carriers and 37,088 non-carriers (48% male) derived from 15 distinct magnetic resonance imaging scanner sites. With standardized methods, we compared subcortical and cortical brain measures (all) and cognitive performance (UK Biobank only) between carrier groups also testing for mediation of brain structure on cognition. We identified positive dosage effects of copy number on intracranial volume (ICV) and total cortical surface area, with the largest effects in frontal and cingulate cortices, and negative dosage effects on caudate and hippocampal volumes. The carriers displayed distinct cognitive deficit profiles in cognitive tasks from the UK Biobank with intermediate decreases in duplication carriers and somewhat larger in deletion carriers-the latter potentially mediated by ICV or cortical surface area. These results shed light on pathobiological mechanisms of neurodevelopmental disorders, by demonstrating gene dose effect on specific brain structures and effect on cognitive function.


Asunto(s)
Variaciones en el Número de Copia de ADN , Esquizofrenia , Encéfalo/diagnóstico por imagen , Deleción Cromosómica , Cognición , Femenino , Humanos , Masculino , Esquizofrenia/genética
13.
Cortex ; 138: 138-151, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33689979

RESUMEN

Human cognitive development is manifold, with different functions developing at different speeds at different ages. Attention is an important domain of this cognitive development, and involves distinct developmental trajectories for separate functions, including conflict processing, selection of sensory input and alertness. In children, several studies using the Attention Network Test (ANT) have investigated the development of three attentional networks that carry out the functions of executive control, orienting and alerting. There is, however, a lack of studies on the development of these attentional components across adolescence, limiting our understanding of their protracted development. To fill this knowledge gap, we performed a mixed cross-sectional and longitudinal study using mixed methods to examine the development of the attentional components and their intraindividual variability from late childhood to young adulthood (n = 287, n observations = 408, age range = 8.5-26.7 years, mean follow up interval = 4.4 years). The results indicated that executive control stabilized during late adolescence, while orienting and alerting continued to develop into young adulthood. In addition, a continuous development into young adulthood was observed for the intraindividual variability measures of orienting and alerting. In a subsample with available magnetic resonance imaging (MRI) data (n = 169, n observations = 281), higher alerting scores were associated with thicker cortices within a right prefrontal cortical region and greater age-related cortical thinning in left rolandic operculum, while higher orienting scores were associated with greater age-related cortical thinning in frontal and parietal regions. Finally, increased consistency of orienting performance was associated with thinner cortex in prefrontal regions and reduced age-related thinning in frontal regions.


Asunto(s)
Función Ejecutiva , Imagen por Resonancia Magnética , Adolescente , Adulto , Niño , Estudios Transversales , Humanos , Estudios Longitudinales , Lóbulo Parietal , Adulto Joven
14.
Front Psychol ; 12: 784758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35153907

RESUMEN

OBJECTIVE: To examine subjective and objective socioeconomic status (SSES and OSES, respectively) as predictors, cognitive abilities as confounders, and personal control perceptions as mediators of health behaviours. DESIGN: A cross-sectional study including 197 participants aged 30-50 years, recruited from the crowd-working platform, Prolific. MAIN OUTCOME MEASURE: The Good Health Practices Scale, a 16-item inventory of health behaviours. RESULTS: SSES was the most important predictor of health behaviours (beta = 0.19, p < 0.01). Among the OSES indicators, education (beta = 0.16, p < 0.05), but not income, predicted health behaviours. Intelligence (r = -0.16, p < 0.05) and memory (r = -0.22, p < 0.01) were negatively correlated with health-promoting behaviours, and the effect of memory was upheld in the multivariate model (beta = -0.17, p < 0.05). Personal control perceptions (mastery and constraints) did not act as mediators. CONCLUSION: SSES predicted health behaviours beyond OSES. The effect of socioeconomic indicators was not confounded by cognitive abilities. Surprisingly, cognitive abilities were negatively associated with health-promoting behaviours. Future research should emphasise SSES as a predictor of health behaviours. Delineating the psychological mechanisms linking SSES with health behaviours would be a valuable contribution toward improved understanding of socioeconomic disparities in health behaviours.

15.
Neuroimage ; 224: 117409, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011416

RESUMEN

Functional neuroimaging of small brainstem structures in humans is gaining interest due to their potential importance in aging and many clinical conditions. Researchers have used different methods to measure activity in the locus coeruleus (LC), the main noradrenergic nucleus in the brain. However, the extent to which these different LC localization methods yield similar results is unclear. In the present article, we compared four different approaches to estimate localization of the LC in a large sample (N = 98): 1) a probabilistic map from a previous study, 2) masks segmented from neuromelanin-sensitive scans, both manually and semi-automatically, 3) components from a masked-independent components analysis of the functional data, and 4) a mask from pupil regression of the functional data. The four methods have all been used previously in the imaging community to localize the LC in vivo in humans. We report several measures of similarity between the LC masks obtained from the different methods. In addition, we compare functional connectivity maps obtained from the different masks. We conclude that sample-specific masks appear more suitable than masks obtained from an independent sample, that masks based on structural versus functional methods may capture different portions of LC, and that, at the group level, the creation of a "consensus" mask using more than one approach may give a better estimate of LC localization.


Asunto(s)
Neuroimagen Funcional/métodos , Locus Coeruleus/diagnóstico por imagen , Adulto , Mapeo Encefálico , Imagen Eco-Planar , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Locus Coeruleus/anatomía & histología , Locus Coeruleus/metabolismo , Locus Coeruleus/fisiología , Masculino , Melaninas/metabolismo , Vías Nerviosas , Probabilidad , Pupila , Adulto Joven
16.
Mol Psychiatry ; 26(8): 3876-3883, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32047264

RESUMEN

Sensitivity to external demands is essential for adaptation to dynamic environments, but comes at the cost of increased risk of adverse outcomes when facing poor environmental conditions. Here, we apply a novel methodology to perform genome-wide association analysis of mean and variance in ten key brain features (accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, intracranial volume, cortical surface area, and cortical thickness), integrating genetic and neuroanatomical data from a large lifespan sample (n = 25,575 individuals; 8-89 years, mean age 51.9 years). We identify genetic loci associated with phenotypic variability in thalamus volume and cortical thickness. The variance-controlling loci involved genes with a documented role in brain and mental health and were not associated with the mean anatomical volumes. This proof-of-principle of the hypothesis of a genetic regulation of brain volume variability contributes to establishing the genetic basis of phenotypic variance (i.e., heritability), allows identifying different degrees of brain robustness across individuals, and opens new research avenues in the search for mechanisms controlling brain and mental health.


Asunto(s)
Estudio de Asociación del Genoma Completo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Putamen , Tálamo
17.
Biol Psychol ; 156: 107945, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889001

RESUMEN

Previous studies on individual differences in pupil size of healthy individuals and their relation to performance have been inconclusive. Using a novel approach, we tested the effect of general cognitive abilities and level of task performance on pretrial baseline and task-evoked pupil (TEP) sizes (N = 116) while we manipulated the level of task demands using a multiple object tracking task. Results did not reveal an effect of general cognitive abilities, estimated by working memory capacity and gF scores, on either baseline or TEP sizes. In contrast, we found an interaction in TEP sizes between level of overall MOT performance and task demands. We propose that individual differences in TEP sizes are related to state-specific level of task performance and task demands, probably in combination with other factors like age, personality traits, and state-specific level of motivation and arousal. We also suggest methodological confounds that may cause the previous inconclusive findings.


Asunto(s)
Nivel de Alerta , Cognición , Memoria a Corto Plazo , Pupila , Humanos , Individualidad , Pupila/fisiología , Análisis y Desempeño de Tareas
18.
Nat Commun ; 11(1): 4016, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782260

RESUMEN

Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson's disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders.


Asunto(s)
Encefalopatías/genética , Encefalopatías/patología , Tronco Encefálico/anatomía & histología , Encefalopatías/diagnóstico por imagen , Encefalopatías/metabolismo , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/metabolismo , Tronco Encefálico/patología , Genes Sobrepuestos , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Herencia Multifactorial , Tamaño de los Órganos/genética
19.
Neurosci Biobehav Rev ; 118: 298-314, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32768486

RESUMEN

Several lines of evidence have suggested for decades a role for norepinephrine (NE) in the pathophysiology and treatment of schizophrenia. Recent experimental findings reveal anatomical and physiological properties of the locus coeruleus-norepinephrine (LC-NE) system and its involvement in brain function and cognition. Here, we integrate these two lines of evidence. First, we review the functional and structural properties of the LC-NE system and its impact on functional brain networks, cognition, and stress, with special emphasis on recent experimental and theoretical advances. Subsequently, we present an update about the role of LC-associated functions for the pathophysiology of schizophrenia, focusing on the cognitive and motivational deficits. We propose that schizophrenia phenomenology, in particular cognitive symptoms, may be explained by an abnormal interaction between genetic susceptibility and stress-initiated LC-NE dysfunction. This in turn, leads to imbalance between LC activity modes, dysfunctional regulation of brain network integration and neural gain, and deficits in cognitive functions. Finally, we suggest how recent development of experimental approaches can be used to characterize LC function in schizophrenia.


Asunto(s)
Norepinefrina , Esquizofrenia , Encéfalo , Humanos , Locus Coeruleus , Neuronas
20.
Brain Cogn ; 143: 105597, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32673900

RESUMEN

Measuring task-evoked pupillary (TEP) responses as an index of phasic activity in the locus coeruleus (LC), we examined two competing hypotheses regarding the alerting and orienting mechanisms of attention. According to a dual mechanism account (Fernandez-Duque & Posner, 1997), two separate noradrenergic and cholinergic mechanisms modulate, respectively, the alerting and orienting effects. However, Corbetta and colleagues (2008) proposed that LC phasic activity may also be involved in orienting effect through its functional relationship with the ventral attentional network. We recruited seventy-five healthy Norwegian participants to perform a Posner cueing task. Both behavioral and pupillary responses revealed the alerting effect. Also, both behavioral and pupillary responses indicated that cued attention is affected by age. Behavioral responses also revealed orienting effect However, we found no TEP differences between valid, invalid, and neutral conditions, suggesting that TEP effects were driven by the alerting effect of cue presentation. Moreover, both behavioral and pupillary estimates of alertness and orienting were uncorrelated. Finally, individual differences in general cognitive abilities did not appear to affect the orienting and alerting mechanisms. This pattern of results is consistent with the dual mechanism account of attention. However, the LC involvement in the (re)orienting attention may be driven by state-specific factors.


Asunto(s)
Atención , Pupila , Señales (Psicología) , Humanos , Individualidad , Tiempo de Reacción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...