Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38673258

RESUMEN

Cellulosic fibers obtained from Barley straw were utilized to reinforce PHB. Four different processed fibers were employed as reinforcing material: sawdust (SW), defibered (DFBF), delignified (DBF), and bleached (BBF) fibers. The composite was processed from two different perspectives: a discontinuous (bach) and an intensification process (extrusion). Once processed and transformed into final shape specimens, the materials were characterized by mechanical testing (tensile mode), scanning electron microscopy, and theoretical simulations by finite elements analysis (FEA). In terms of mechanical properties, only the elastic moduli (Et) exhibited results ranging from 37% to 170%, depending on the reinforcement composition. Conversely, strengths at break, under both tensile and bending tests, tended to decrease, indicating poor affinity between the components. Due to the mechanical treatment applied on the fiber, DFBF emerged as the most promising filler, with mechanical properties closest to those of neat PHB. DFBF-based composites were subsequently produced through process intensification using a twin-screw extruder, and molded into flowerpots. Mechanical results showed almost identical properties between the discontinuous and intensification processes. The suitability of the material for agriculture flowerpots was demonstrated through finite analysis simulation (FEA), which revealed that the maximum von Mises stresses (5.38 × 105 N/m2) and deformations (0.048 mm) were well below the limits of the composite materials.

2.
Polymers (Basel) ; 15(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36771880

RESUMEN

Nowadays, the search for new materials with a sustainable character to reduce the production of residues is under continuous research. In this sense, fully biodegradable composites based on polyhydroxybutyrate and different pretreated fibres coming from barley straw have been fabricated, and their resistance to environmental controlled conditions have been characterized. The materials were already compounded in a kinetic mixer and injection-moulded as specimens for tensile assay to be aged in a Xenotest chamber so as to simulate environmental conditioning. The samples, after accelerated aging, were characterized thus: mechanical characterization (tensile assay), water uptake (immersion and contact angle), and surface observation (optical and SEM microscopy). The incorporation of the fibres helps the composite to keep its structure for a longer time. On the other hand, the presence of the fibres increases the water uptake capacity to allow water permeation in the composite, which allows final degradation, characterised by a significant drop in properties after one month of exposure to simulated environmental conditions.

3.
Polymers (Basel) ; 14(22)2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36433017

RESUMEN

The performance of henequen fibers and polypropylene composites obtained by injection molding with and without coupling agent was evaluated. Henequen fibers are natural non-wood fibers mainly used in textile sector or in thermosetting matrix composites. In this work, henequen fibers have been used as a possible substitute reinforcement material for sized glass fibers. The surface charge density of the materials used was evaluated, as well as the morphology of the fibers inside the material. A significant reduction in the length of the fibers was observed as a consequence of the processing. The use of a 4% coupling agent based on fiber content was found to be effective in achieving significant improvements in the tensile strength of the composites in the reinforcement range studied. The influence of the aspect ratio on the coupling factor was determined, as well as the evaluation of the interface quality. The results obtained demonstrate the great potential of henequen fibers as reinforcement of composite materials, giving rise to strong interfaces with coupling. Finally, the comparison of henequen fiber composites with sized glass fiber composites showed that it is possible to substitute polypropylene composites with 20 wt.% glass fiber for 50 wt.% henequen fibers.

4.
Materials (Basel) ; 15(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35161103

RESUMEN

In the present work, a functionalization of polylactic acid (PLA) has been carried out to anchor maleic anhydride onto the main polymer chain to promote improvement in the compatibility of this polymer matrix with cellulose fibres. Low-molecular-weight PLA has been reacted with maleic anhydride following different procedures: a bulk reaction in an internal mixer and a solution reaction. The presence of oxygen during bulk processing did not allow for functionalization, guiding the reaction towards a decrease in the molecular weight of the material. On the contrary, a controlled reaction under an inert atmosphere in the presence of dioxane as the solvent, at reflux temperature, led to the functionalization of the polymer reaching different yields depending on the percentage of radical initiator and maleic anhydride added and reaction time. The yield of functionalization has been monitored by acid number titration as well as 1H NMR, with optimal yield values of functionalization being up to 3.5%. The PLA-functionalized formula has been used to make commercial PLA compatible with cellulose fibres derived from a thermomechanical treatment. The addition of 10% w/w of fibres to PLA increases the ultimate tensile strength (UTS) of PLA by up to 15%. The incorporation of 4 w/w of the already-functionalized coupling agent to the composite produces improvements in UTS of up to 24% regarding PLA, which confirms the functionalization from a performance point of view.

5.
Polymers (Basel) ; 13(16)2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34451280

RESUMEN

One of the most promising expectations in the design of new materials for food packaging is focused on the development of biodegradable systems with improved barrier character. In this sense PLA reinforced with nanoclay is a potential alternative to the use of conventional oil-derivative polymers due to the synergetic effect of the biodegradable character of PLA and the barrier-induced effect derived from the dispersion of nanoparticles. In this work, composite materials based on PLA and reinforced with bentonite nanoparticles (up to 4% w/w) (NC) have been prepared to produce films with improved barrier character against water vapor transportation. Additionally, the biodegradable character of the composites depending on the crystallinity of the polymer and percentage of NC have been evaluated in the presence of an enzymatic active medium (proteinase K). Finally, a study of the capacity to film production of the composites has been performed to determine the viability of the proposals. The dispersion of the nanoparticles induced a tortuous pathway of water vapor crossing, reducing this diffusion by more than 22%. Moreover, the nanoclays materials were in all the cases acceptable for food packing in terms of migration. A migration lower than 1 mg/m2 was obtained in all the materials. Nonetheless, the presence of the nanoclays in decreased biodegradable capacity was observed. The time was enlarged to more than 15 days for the maximum content (4% w/w). On the other hand, the incorporation of NC does not avoid the processability of the material to obtain film-shaped processed materials.

6.
Polymers (Basel) ; 13(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209704

RESUMEN

Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.

7.
Polymers (Basel) ; 13(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672280

RESUMEN

The use of bio-based residues is one of the key indicators towards sustainable development goals. In this work, bacterial cellulose, a residue from the fermentation of kombucha tea, was tested as a reinforcing nanofiber network in an emulsion-polymerized poly(methyl methacrylate) (PMMA) matrix. The use of the nanofiber network is facilitating the formation of nanocomposites with well-dispersed nanofibers without using organic solvents or expensive methodologies. Moreover, the bacterial cellulose network structure can serve as a template for the emulsion polymerization of PMMA. The morphology, size, crystallinity, water uptake, and mechanical properties of the kombucha bacterial cellulose (KBC) network were studied. The results showed that KBC nanofibril diameters were ranging between 20-40 nm and the KBC was highly crystalline, >90%. The 3D network was lightweight and porous material, having a density of only 0.014 g/cm3. Furthermore, the compressed KBC network had very good mechanical properties, the E-modulus was 8 GPa, and the tensile strength was 172 MPa. The prepared nanocomposites with a KBC concentration of 8 wt.% were translucent with uniform structure confirmed with scanning electron microscopy study, and furthermore, the KBC network was homogeneously impregnated with the PMMA matrix. The mechanical testing of the nanocomposite showed high stiffness compared to the neat PMMA. A simple simulation of the tensile strength was used to understand the limited strain and strength given by the bacterial cellulose network. The excellent properties of the final material demonstrate the capability of a residue of kombucha fermentation as an excellent nanofiber template for use in polymer nanocomposites.

8.
Polymers (Basel) ; 12(9)2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962257

RESUMEN

The research toward environmentally friendly materials has devoted a great effort on composites based on natural fiber-reinforced biopolymers. These materials have shown noticeable mechanical properties, mainly tensile and flexural strengths, as a consequence of increasingly strong interfaces. Previous studies have shown a good interface between natural fibers and poly (lactic acid) (PLA) when these fibers present a low lignin content in their surface chemical composition (bleached fibers). Nonetheless, one of the main drawbacks of these materials is the hydrophilicity of the reinforcements in front of the mineral ones like glass fiber. Meanwhile, the behavior of such materials under impact is also of importance to evaluate its usefulness. This research evaluates the water uptake behavior and the impact strength of bleached Kraft softwood-reinforced PLA composites that have been reported to show noticeable tensile and flexural properties. The paper explores the differences between these bio-based materials and commodity composites like glass fiber-reinforced polypropylene.

9.
Polymers (Basel) ; 12(8)2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751192

RESUMEN

The present work aims at determining the potential of date palm wastes to be applied as reinforcement in polypropylene. For this, fibers were separated from the raw biomass via mechanical defibration in Sprout Waldron equipment. Then, three different treatment strategies were adopted on the fibers, being (i) mechanical, (ii) chemical with NaOH, and (iii) enzymatical with xylanases and pectinases. Fibers were characterized in terms of chemical composition, morphology and SEM. Additionally, PP was reinforced with date palm fibers and the composites' stiffness was evaluated. The analysis was performed from a macro and micro mechanical viewpoint. The incorporation of 40 and 60 wt.% of DPF-E enhanced the Young's modulus of PP by 205 and 308%, respectively. The potential of enzymatically treated fibers to replace glass fibers in composites was studied, exhibiting similar stiffening abilities at 60 wt.% of date palm fiber (6.48 GPa) and 40% of glass fibers (6.85 GPa). The intrinsic Young's modulus of the fibers was set at values around 16, 20 and 24 GPa for mechanical, chemical and enzymatic fibers. From the micromechanical analysis, the efficiency of the reinforcement as well as the contribution of the length and orientation to the Young's modulus of the composite was evaluated.

10.
Polymers (Basel) ; 12(6)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604725

RESUMEN

In this work, date palm waste (DPW) stemming from the annual pruning of date palm was used as reinforcing filler in polypropylene (PP) matrix at 40% w/w. Three pre-treatment routes were performed for the DPW, namely (i) defibration, (ii) soft alkali treatment, and (iii) enzymatic treatment, to obtain date palm fibers (DPF) and to investigate the effect of each process on their chemical composition, which will ultimately affect the mechanical properties of the resulting composites. The enzymatic and alkali treatment, combined with maleated polypropylene (MAPP) as a coupling agent, resulted in a composite with higher strength and stiffness than the neat PP. The differences in the reinforcing effect were explained by the change in the morphology of DPF and their chemical surface composition according to the selected treatment of DPW. Enzymatic treatment maximized the tensile strength of the compound as a consequence of an improvement in the interfacial shear strength and the intrinsic resistance of the fibers.

11.
Polymers (Basel) ; 12(6)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604815

RESUMEN

This paper describes the potential of using hemp core waste in the composite industry. These lignocellulosic residues can be used to produce environmentally friendly and economically viable composites and improve the overall value chain of hemp production. To this purpose, hemp core residues were alkaline treated at different NaOH concentrations and then mechanically defibrated. Hemp core fibers were mixed with polypropylene and injection molded to obtain testing specimens. The effect of sodium hydroxide on the flexural modulus of composites was studied from macro and micro mechanical viewpoints. Results showed remarkable improvements in the flexural modulus due to the presence of hemp core fibers in the composites. At a 50 wt % of reinforcement content, increments around 239%, 250% and 257% were obtained for composites containing fibers treated at a 5, 7.5 and 10 wt % of NaOH, respectively. These results were comparable to those of wood composites, displaying the potential of hemp core residues. The intrinsic flexural modulus of the hemp core fibers was computed by means of micromechanical analysis and was calculated using the ratios between a fiber flexural modulus factor and a fiber tensile modulus factor. The results agreed with those obtained by using models such as Hirsch and Tsai-Pagano. Other micromechanical parameters were studied to fully understand the contribution of the phases. The relationship between the fibers' intrinsic flexural and Young's moduli was studied, and the differences between properties were attributed to stress distribution and materials' anisotropy.

12.
Polymers (Basel) ; 10(4)2018 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-30966475

RESUMEN

The replacement of commodity polyolefin, reinforced with glass fiber (GF), by greener alternatives has been a topic of research in recent years. Cellulose fibers have shown, under certain conditions, enough tensile capacities to replace GF, achieving competitive mechanical properties. However, if the objective is the production of environmentally friendlier composites, it is necessary to replace oil-derived polymer matrices by bio-based or biodegradable ones, depending on the application. Polyamide 11 (PA11) is a totally bio-based polyamide that can be reinforced with cellulosic fibers. Composites based on this polymer have demonstrated enough tensile strength, as well as stiffness, to replace GF-reinforced polypropylene (PP). However, flexural properties are of high interest for engineering applications. Due to the specific character of short-fiber-reinforced composites, significant differences are expected between the tensile and flexural properties. These differences encourage the study of the flexural properties of a material prior to the design or development of a new product. Despite the importance of the flexural strength, there are few works devoted to its study in the case of PA11-based composites. In this work, an in-depth study of the flexural strength of PA11 composites, reinforced with Stoneground wood (SGW) from softwood, is presented. Additionally, the results are compared with those of PP-based composites. The results showed that the SGW fibers had lower strengthening capacity reinforcing PA11 than PP. Moreover, the flexural strength of PA11-SGW composites was similar to that of PP-GF composites.

13.
Polymers (Basel) ; 10(7)2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30960642

RESUMEN

Composite materials have attracted the attention of some industrial fields due to their lightness and relatively good mechanical properties. One of these properties is impact strength, essential to ensure the processability and application of these materials under impact conditions. In addition, it is known that water absorption has a plasticizing effect in polymers and polymer composites which can change the properties of such materials and limit their use. Moreover, this effect worsens when hydrophilic reinforcement is used. In this work, the impact and water uptake behavior of totally bio-based composites from polyamide 11 (PA11) and lignocellulosic pine fibers mechanically processed as stone groundwood (SGW) were studied. The impact resistance of PA11 and its composites was higher than expected, obtaining better results than those of polyolefin-based materials. The evaluated mechanical properties and the micrographs showed an adequate interface. The water uptake test showed that PA11 and its composites had non-Fickian and Fickian case I behaviours, respectively. It was found that the maximum water absorbance was similar to that of SGW reinforced polypropylene.

14.
Int J Biol Macromol ; 108: 927-935, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29104050

RESUMEN

This study describes the use of lignin as natural adhesive for the production high density fiberboards (HDF) made from wheat straw. In the present work, this agricultural residue was used to produce thermomechanical pulp and the used lignin was obtained from the spent liquors generated in the same process. A hot pressing process was conducted to manufacture these fiberboards and different percentages of this green adhesive were targeted. The wheat straw raw material and its pulp were characterized. Apart from that, the chemical composition and the thermal properties of the lignin sample were evaluated. Physical and mechanical properties were assessed and the results revealed that the panels made only with wheat straw fibers had a flexural strength value (52.79MPa) even above the value corresponding to the commercial HDF (41.70MPa). Also, results showed that the incorporation of soda-lignin lead to lignocellulosic composites that, as lignin content was increased (from 0 to 15%), mechanical properties were enhanced. The highest mechanical performance was reached for fiberboards at 15% of lignin with a flexural strength of 96.81MPa, a flexural modulus of 3.55GPa, and finally an internal bond of 1.46MPa.


Asunto(s)
Adhesivos/química , Lignina/química , Materiales Biocompatibles , Ensayo de Materiales , Fenómenos Mecánicos , Fenómenos Físicos , Fitoquímicos/química , Termogravimetría , Triticum/química
15.
Polymers (Basel) ; 9(10)2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-30965825

RESUMEN

In this work, polyamide 11 (PA11) and stone ground wood fibres (SGW) were used, as an alternative to non-bio-based polymer matrices and reinforcements, to obtain short fibre reinforced composites. The impact of the reinforcement on the thermal degradation, thermal transitions and microstructure of PA11-based composites were studied. Natural fibres have lower degradation temperatures than PA11, thus, composites showed lower onset degradation temperatures than PA11, as well. The thermal transition and the semi-crystalline structure of the composites were similar to PA11. On the other hand, when SGW was submitted to an annealing treatment, the composites prepared with these fibres increased its crystallinity, with increasing fibre contents, compared to PA11. The differences between the glass transition temperatures of annealed and untreated composites decreased with the fibre contents. Thus, the fibres had a higher impact in the composites mechanical behaviour than on the mobility of the amorphous phase. The crystalline structure of PA11 and PA11-SGW composites, after annealing, was transformed to α' more stable phase, without any negative impact on the properties of the fibres.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...