Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32630078

RESUMEN

Salicylic acid (SA) has an essential role in the responses of plants to pathogens. SA initiates defence signalling via binding to proteins. NPR1 is a transcriptional co-activator and a key target of SA binding. Many other proteins have recently been shown to bind SA. Amongst these proteins are important enzymes of primary metabolism. This fact could stand behind SA's ability to control energy fluxes in stressed plants. Nevertheless, only sparse information exists on the role and mechanisms of such binding. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was previously demonstrated to bind SA both in human and plants. Here, we detail that the A1 isomer of chloroplastic glyceraldehyde 3-phosphate dehydrogenase (GAPA1) from Arabidopsis thaliana binds SA with a KD of 16.7 nM, as shown in surface plasmon resonance experiments. Besides, we show that SA inhibits its GAPDH activity in vitro. To gain some insight into the underlying molecular interactions and binding mechanism, we combined in silico molecular docking experiments and molecular dynamics simulations on the free protein and protein-ligand complex. The molecular docking analysis yielded to the identification of two putative binding pockets for SA. A simulation in water of the complex between SA and the protein allowed us to determine that only one pocket-a surface cavity around Asn35-would efficiently bind SA in the presence of solvent. In silico mutagenesis and simulations of the ligand/protein complexes pointed to the importance of Asn35 and Arg81 in the binding of SA to GAPA1. The importance of this is further supported through experimental biochemical assays. Indeed, mutating GAPA1 Asn35 into Gly or Arg81 into Leu strongly diminished the ability of the enzyme to bind SA. The very same cavity is responsible for the NADP+ binding to GAPA1. More precisely, modelling suggests that SA binds to the very site where the pyrimidine group of the cofactor fits. NADH inhibited in a dose-response manner the binding of SA to GAPA1, validating our data.


Asunto(s)
Arabidopsis/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Ácido Salicílico/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cloroplastos/enzimología , Gliceraldehído-3-Fosfato Deshidrogenasas/química , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , NAD , Mutación Puntual
3.
Plant Cell Environ ; 41(3): 533-547, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28865108

RESUMEN

Xerophyta humilis is a poikilochlorophyllous monocot resurrection plant used as a model to study vegetative desiccation tolerance. Dehydration imposes tension and ultimate loss of integrity of membranes in desiccation sensitive species. We investigated the predominant molecular species of glycerolipids present in root and leaf tissues, using multiple reaction monitoring mass spectrometry, and then analysed changes therein during dehydration and subsequent rehydration of whole plants. The presence of fatty acids with long carbon chains and with odd numbers of carbons were detected and confirmed by gas chromatography. Dehydration of both leaves and roots resulted in an increase in species containing polyunsaturated fatty acids and a decrease in disaturated species. Upon rehydration, lipid saturation was reversed, with this being initiated immediately upon watering in roots but only 12-24 hr later in leaves. Relative levels of species with short-chained odd-numbered saturated fatty acids decreased during dehydration and increased during rehydration, whereas the reverse trend was observed for long-chained fatty acids. X. humilis has a unique lipid composition, this report being one of the few to demonstrate the presence of odd-numbered fatty acids in plant phosphoglycerolipids.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Magnoliopsida/fisiología , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Cromatografía de Gases , Deshidratación , Ácidos Grasos Insaturados/análisis , Ácidos Grasos Insaturados/metabolismo , Galactolípidos/metabolismo , Glucolípidos/metabolismo , Magnoliopsida/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Reproducibilidad de los Resultados
4.
J Biol Chem ; 285(8): 5594-605, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20018851

RESUMEN

GILZ (glucocorticoid-induced leucine zipper) is an ubiquitous protein whose expression is induced by glucocorticoids in lymphoid cells. We previously showed that GILZ expression is rapidly induced upon interleukin 2 deprivation in T-cells, protecting cells from apoptosis induced by forkhead box subgroup O3 (FOXO3). The aim of this work is to elucidate the molecular mechanism of FOXO factor inhibition by GILZ. We show in the myeloid cell line HL-60 and the lymphoid CTLL-2 T-cell line that GILZ down-regulates the expression of p27(KIP1) and Bim, two FOXO targets involved in cell cycle regulation and apoptosis, respectively. GILZ inhibits FOXO1, FOXO3, and FOXO4 transcriptional activities measured with natural or synthetic FOXO-responsive promoters in HL-60 cells. This inhibitory effect is independent of protein kinase B and IkappaB kinase phosphorylation sites. GILZ does not hinder FOXO3 DNA-binding activity and does not physically interact with FOXO3. However, using fluorescence microscopy, we observe that GILZ expression provokes a Crm-1-dependent nuclear exclusion of FOXO3 leading to its relocalization to the cytoplasm. Moreover, GILZ exclusive cytoplasmic localization is a prerequisite for FOXO3 inhibition and relocalization. We propose that GILZ is a general inhibitor of FOXO factors acting through an original mechanism by preventing them from reaching target genes within the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Carioferinas/metabolismo , Regiones Promotoras Genéticas/fisiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/fisiología , Proteínas de Ciclo Celular , Núcleo Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Citoplasma/genética , Citoplasma/metabolismo , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/genética , Células HL-60 , Humanos , Interleucina-2/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Carioferinas/genética , Receptores Citoplasmáticos y Nucleares/genética , Factores de Transcripción/genética , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...