Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 10(23): 2252-2269, 2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-31040917

RESUMEN

Immune checkpoint inhibitors (CPIs) are associated with a number of immune-related adverse events and low response rates. We provide preclinical evidence for use of a retroviral replicating vector (RRV) selective to cancer cells, to deliver CPI agents that may circumvent such issues and increase efficacy. An RRV, RRV-scFv-PDL1, encoding a secreted single chain variable fragment targeting PD-L1 can effectively compete with PD-1 for PD-L1 occupancy. Cell binding assays showed trans-binding activity on 100% of cells in culture when infection was limited to 5% RRV-scFv-PDL1 infected tumor cells. Further, the ability of scFv PD-L1 to rescue PD-1/PD-L1 mediated immune suppression was demonstrated in a co-culture system consisting of human-derived immune cells and further demonstrated in several syngeneic mouse models including an intracranial tumor model. These tumor models showed that tumors infected with RRV-scFv-PD-L1 conferred robust and durable immune-mediated anti-tumor activity comparable or superior to systemically administered anti-PD-1 or anti PD-L1 monoclonal antibodies. Importantly, the nominal level of scFv-PD-L1 detected in serum is ∼50-150 fold less than reported for systemically administered therapeutic antibodies targeting immune checkpoints. These results support the concept that RRV-scFv-PDL1 CPI strategy may provide an improved safety and efficacy profile compared to systemic monoclonal antibodies of currently approved therapies.

2.
Mol Ther Nucleic Acids ; 6: 221-232, 2017 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-28325288

RESUMEN

Tumor cells express a number of immunosuppressive molecules that can suppress anti-tumor immune responses. Efficient delivery of small interfering RNAs to treat a wide range of diseases including cancers remains a challenge. Retroviral replicating vectors (RRV) can be used to stably and selectively introduce genetic material into cancer cells. Here, we designed RRV to express shRNA (RRV-shPDL1) or microRNA30-derived shRNA (RRV-miRPDL1) using Pol II or Pol III promoters to downregulate PDL1 in human cancer cells. We also designed RRV expressing cytosine deaminase (yCD2) and miRPDL1 for potential combinatorial therapy. Among various configurations tested, we showed that RRV-miRPDL1 vectors with Pol II or Pol III promoter replicated efficiently and exhibited sustained downregulation of PDL1 protein expression by more than 75% in human cancer cell lines with high expression of PDL1. Immunologic effects of RRV-miRPDL1 were assessed by a trans-suppression lymphocyte assay. In vitro data showed downregulation of PDL1+ tumor cells restored activation of CD8+ T cells and bio-equivalency compared to anti-PDL1 antibody treatment. These results suggest RRV-miRPDL1 may be an alternative therapeutic approach to enhance anti-tumor immunity by overcoming PDL1-induced immune suppression from within cancer cells and this approach may also be applicable to other cancer targets.

3.
Hum Gene Ther ; 26(2): 82-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25419577

RESUMEN

Toca 511 (vocimagene amiretrorepvec), a nonlytic, amphotropic retroviral replicating vector (RRV), encodes and delivers a functionally optimized yeast cytosine deaminase (CD) gene to tumors. In orthotopic glioma models treated with Toca 511 and 5-fluorocytosine (5-FC) the CD enzyme within infected cells converts 5-FC to 5-fluorouracil (5-FU), resulting in tumor killing. Toca 511, delivered locally either by intratumoral injection or by injection into the resection bed, in combination with subsequent oral extended-release 5-FC (Toca FC), is under clinical investigation in patients with recurrent high-grade glioma (HGG). If feasible, intravenous administration of vectors is less invasive, can easily be repeated if desired, and may be applicable to other tumor types. Here, we present preclinical data that support the development of an intravenous administration protocol. First we show that intravenous administration of Toca 511 in a preclinical model did not lead to widespread or uncontrolled replication of the RVV. No, or low, viral DNA was found in the blood and most of the tissues examined 180 days after Toca 511 administration. We also show that RRV administered intravenously leads to efficient infection and spread of the vector carrying the green fluorescent protein (GFP)-encoding gene (Toca GFP) through tumors in both immune-competent and immune-compromised animal models. However, initial vector localization within the tumor appeared to depend on the mode of administration. Long-term survival was observed in immune-competent mice when Toca 511 was administered intravenously or intracranially in combination with 5-FC treatment, and this combination was well tolerated in the preclinical models. Enhanced survival could also be achieved in animals with preexisting immune response to vector, supporting the potential for repeated administration. On the basis of these and other supporting data, a clinical trial investigating intravenous administration of Toca 511 in patients with recurrent HGG is currently open and enrolling.


Asunto(s)
Neoplasias Encefálicas/terapia , Citosina Desaminasa/genética , Proteínas Fúngicas/genética , Terapia Genética/métodos , Vectores Genéticos/farmacocinética , Glioma/terapia , Retroviridae/genética , Animales , Anticuerpos Neutralizantes/análisis , Antimetabolitos/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Ensayos Clínicos como Asunto , Citosina Desaminasa/metabolismo , Citosina Desaminasa/farmacocinética , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Flucitosina/farmacología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/farmacocinética , Expresión Génica , Genes Reporteros , Vectores Genéticos/administración & dosificación , Vectores Genéticos/química , Glioma/genética , Glioma/mortalidad , Glioma/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inyecciones Intravenosas , Ratones , Ratones Desnudos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacocinética , Retroviridae/inmunología , Análisis de Supervivencia , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...