Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Hortic ; 4(1): 26, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38945997

RESUMEN

The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.

2.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542498

RESUMEN

Tea grey blight disease is one of the most destructive diseases that infects tea and is caused by the pathogen Pestalotiopsis theae (Sawada) Steyaert. L-theanine is a unique non-protein amino acid of the tea plant. Different concentrations of L-theanine exhibit significant inhibitory effects on the growth and sporulation ability of the pathogen causing tea grey blight disease. To understand the effect mechanism of L-theanine on P. theae, transcriptome profiling was performed on the pathogenic mycelium treated with three different concentrations of L-theanine: no L-theanine treatment (TH0), 20 mg/mL theanine treatment (TH2), and 40 mg/mL theanine treatment (TH4). The colony growths were significantly lower in the treatment with L-theanine than those without L-theanine. The strain cultured with a high concentration of L-theanine produced no spores or only a few spores. In total, 2344, 3263, and 1158 differentially expressed genes (DEGs) were detected by RNA-sequencing in the three comparisons, Th2 vs. Th0, Th4 vs. Th0, and Th4 vs. Th2, respectively. All DEGs were categorized into 24 distinct clusters. According to GO analysis, low concentrations of L-theanine primarily affected molecular functions, while high concentrations of L-theanine predominantly affected biological processes including external encapsulating structure organization, cell wall organization or biogenesis, and cellular amino acid metabolic process. Based on KEGG, the DEGs of Th2 vs. Th0 were primarily involved in pentose and glucuronate interconversions, histidine metabolism, and tryptophan metabolism. The DEGs of Th4 vs. Th0 were mainly involved in starch and sucrose metabolism, amino sugar, and nucleotide sugar metabolism. This study indicated that L-theanine has a significant impact on the growth and sporulation of the pathogen of tea grey blight disease and mainly affects amino acid metabolism, carbohydrate metabolism, and cellular structure-related biosynthesis processes of pathogenic fungi. This work provides insights into the direct control effect of L-theanine on pathogenic growth and also reveals the molecular mechanisms of inhibition of L-theanine to P. theae.


Asunto(s)
Ascomicetos , Camellia sinensis , Transcriptoma , Glutamatos/farmacología , Camellia sinensis/metabolismo , Hojas de la Planta/metabolismo , Té/química
3.
Plant Biotechnol J ; 22(6): 1468-1490, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38169146

RESUMEN

Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24ΔN14. PyBBX24ΔN14 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not. PyBBX24ΔN14 directly activates the transcription of PyUFGT and PyMYB10 through interaction with PyHY5. Moreover, stable overexpression of PyBBX24ΔN14 exhibits a dwarfing phenotype in Arabidopsis, tobacco, and tomato plants. PyBBX24ΔN14 can activate the expression of PyGA2ox8 via directly binding to its promoter, thereby deactivating bioactive GAs and reducing the plant height. However, the nuclear localization signal (NLS) and Valine-Proline (VP) motifs in the C-terminus of PyBBX24 reverse these effects. Interestingly, mutations leading to premature termination of PyBBX24 were also identified in red sports of un-related European pear varieties. We conclude that mutations in PyBBX24 gene link both an increase in pigmentation and a decrease in plant height.


Asunto(s)
Proteínas de Plantas , Pyrus , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Antocianinas/metabolismo , Pigmentación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Sitios de Carácter Cuantitativo/genética , Plantas Modificadas Genéticamente/genética , Frutas/genética , Frutas/metabolismo , Frutas/crecimiento & desarrollo , Nicotiana/genética , Nicotiana/metabolismo , Fenotipo
4.
Hortic Res ; 10(11): uhad202, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38023484

RESUMEN

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures), as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium-a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

5.
Plant Cell Environ ; 46(12): 3663-3679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37555620

RESUMEN

For many fruit crops, the colour of the fruit outwardly defines its eating quality. Fruit pigments provide reproductive advantage for the plant as well as providing protection against unfavourable environmental conditions and pathogens. For consumers these colours are considered attractive and provide many of the dietary benefits derived from fruits. In the majority of species, the main pigments are either carotenoids and/or anthocyanins. They are produced in the fruit as part of the ripening process, orchestrated by phytohormones and an ensuing transcriptional cascade, culminating in pigment biosynthesis. Whilst this is a controlled developmental process, the production of pigments is also attuned to environmental conditions such as light quantity and quality, availability of water and ambient temperature. If these factors intensify to stress levels, fruit tissues respond by increasing (or ceasing) pigment production. In many cases, if the stress is not severe, this can have a positive outcome for fruit quality. Here, we focus on the principal environmental factors (light, temperature and water) that can influence fruit colour.


Asunto(s)
Antocianinas , Frutas , Frutas/metabolismo , Carotenoides , Pigmentación , Agua , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
6.
bioRxiv ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37577683

RESUMEN

Domestication of cranberry and blueberry began in the United States in the early 1800s and 1900s, respectively, and in part owing to their flavors and health-promoting benefits are now cultivated and consumed worldwide. The industry continues to face a wide variety of production challenges (e.g. disease pressures) as well as a demand for higher-yielding cultivars with improved fruit quality characteristics. Unfortunately, molecular tools to help guide breeding efforts for these species have been relatively limited compared with those for other high-value crops. Here, we describe the construction and analysis of the first pangenome for both blueberry and cranberry. Our analysis of these pangenomes revealed both crops exhibit great genetic diversity, including the presence-absence variation of 48.4% genes in highbush blueberry and 47.0% genes in cranberry. Auxiliary genes, those not shared by all cultivars, are significantly enriched with molecular functions associated with disease resistance and the biosynthesis of specialized metabolites, including compounds previously associated with improving fruit quality traits. The discovery of thousands of genes, not present in the previous reference genomes for blueberry and cranberry, will serve as the basis of future research and as potential targets for future breeding efforts. The pangenome, as a multiple-sequence alignment, as well as individual annotated genomes, are publicly available for analysis on the Genome Database for Vaccinium - a curated and integrated web-based relational database. Lastly, the core-gene predictions from the pangenomes will serve useful to develop a community genotyping platform to guide future molecular breeding efforts across the family.

7.
Plant Physiol ; 192(3): 1659-1665, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37148289
8.
Plant Physiol ; 192(3): 1696-1710, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37129240

RESUMEN

The genus Vaccinium L. (Ericaceae) contains premium berryfruit crops, including blueberry, cranberry, bilberry, and lingonberry. Consumption of Vaccinium berries is strongly associated with various potential health benefits, many of which are attributed to the relatively high concentrations of flavonoids, including the anthocyanins that provide the attractive red and blue berry colors. Because these phytochemicals are increasingly appealing to consumers, they have become a crop breeding target. There has been substantial recent progress in Vaccinium genomics and genetics together with new functional data on the transcriptional regulation of flavonoids. This is helping to unravel the developmental control of flavonoids and identify genetic regions and genes that can be selected for to further improve Vaccinium crops and advance our understanding of flavonoid regulation and biosynthesis across a broader range of fruit crops. In this update we consider the recent progress in understanding flavonoid regulation in fruit crops, using Vaccinium as an example and highlighting the significant gains in both genomic tools and functional analysis.


Asunto(s)
Flavonoides , Vaccinium , Vaccinium/genética , Antocianinas , Frutas/genética , Fitomejoramiento
9.
Front Plant Sci ; 14: 1082246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818839

RESUMEN

Anthocyanins are a major group of red to blue spectrum plant pigments with many consumer health benefits. Anthocyanins are derived from the flavonoid pathway and diversified by glycosylation and methylation, involving the concerted action of specific enzymes. Blueberry and bilberry (Vaccinium spp.) are regarded as 'superfruits' owing to their high content of flavonoids, especially anthocyanins. While ripening-related anthocyanin production in bilberry (V. myrtillus) and blueberry (V. corymbosum) is regulated by the transcriptional activator MYBA1, the role of specific structural genes in determining the concentration and composition of anthocyanins has not been functionally elucidated. We isolated three candidate genes, CHALCONE SYNTHASE (VmCHS1), ANTHOCYANIDIN SYNTHASE (VmANS) and UDP-GLUCOSE : FLAVONOID-3-O-GLYCOSYLTRANSFERASE (VcUFGT2), from Vaccinium, which were predominantly expressed in pigmented fruit skin tissue and showed high homology between bilberry and blueberry. Agrobacterium-mediated transient expression of Nicotiana benthamiana showed that overexpression of VcMYBA1 in combination with VmANS significantly increased anthocyanin concentration (3-fold). Overexpression of VmCHS1 showed no effect above that induced by VcMYBA1, while VcUFGT2 modulated anthocyanin composition to produce delphinidin-3-galactosylrhamnoside, not naturally produced in tobacco. In strawberry (Fragaria × ananassa), combined transient overexpression of VcUFGT2 with a FLAVONOID 3´,5´-HYDROXYLASE from kiwifruit (Actinidia melanandra) modulated the anthocyanin profile to include galactosides and arabinosides of delphinidin and cyanidin, major anthocyanins in blueberry and bilberry. These findings provide insight into the role of the final steps of biosynthesis in modulating anthocyanin production in Vaccinium and may contribute to the targeted breeding of new cultivars with improved nutritional properties.

10.
Plant J ; 113(1): 92-105, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36401738

RESUMEN

Phloridzin is the most abundant polyphenolic compound in apple (Malus × domestica Borkh.), which results from the action of a key phloretin-specific UDP-2'-O-glucosyltransferase (MdPGT1). Here, we simultaneously assessed the effects of targeting MdPGT1 by conventional transgenesis and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated genome editing. To this end, we conducted transcriptomic and metabolic analyses of MdPGT1 RNA interference knockdown and genome-edited lines. Knockdown lines exhibited characteristic impairment of plant growth and leaf morphology, whereas genome-edited lines exhibited normal growth despite reduced foliar phloridzin. RNA-sequencing analysis identified a common core of regulated genes, involved in phenylpropanoid and flavonoid pathways. However, we identified genes and processes differentially modulated in stunted and genome-edited lines, including key transcription factors and genes involved in phytohormone signalling. Therefore, we conducted a phytohormone profiling to obtain insight into their role in the phenotypes observed. We found that salicylic and jasmonic acid were increased in dwarf lines, whereas auxin and ABA showed no correlation with the growth phenotype. Furthermore, bioactive brassinosteroids were commonly up-regulated, whereas gibberellin GA4 was distinctively altered, showing a sharp decrease in RNA interference knockdown lines. Expression analysis by reverse transcriptase-quantitative polymerase chain reaction expression analysis further confirmed transcriptional regulation of key factors involved in brassinosteroid and gibberellin interaction. These findings suggest that a differential modulation of phytohormones may be involved in the contrasting effects on growth following phloridzin reduction. The present study also illustrates how CRISPR/Cas9 genome editing can be applied to dissect the contribution of genes involved in phloridzin biosynthesis in apple.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Sistemas CRISPR-Cas , Florizina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Giberelinas/metabolismo , Edición Génica/métodos
11.
Plant Sci ; 326: 111499, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36265764

RESUMEN

DNA methylation, an epigenetic mark, is proposed to regulate plant anthocyanin biosynthesis. It well known that light induces anthocyanin accumulation, with bagging treatments commonly used to investigate light-controlled anthocyanin biosynthesis. We studied the DNA methylome landscape during pear skin coloration under various conditions (fruits re-exposed to sunlight after bag removal). The DNA methylation level in gene body/TE and its flanking sequence was generally similar between debagged and bagged treatments, however differentially methylated regions (DMRs) were re-modelled after light-exposure. Both DNA demethylase homologs and the RNA-directed DNA methylation (RdDM) pathways contributed to this re-distribution. A total of 310 DEGs were DMR-associated during light-induced anthocyanin biosynthesis between debagged and bagged treatments. The hypomethylated mCHH context was seen within the promoter of PyUFGT, together with other anthocyanin biosynthesis genes (PyPAL, PyDFR and PyANS). This enhanced transcriptional activation and promoted anthocyanin accumulation after light re-exposure. Unlike previous reports on bud sports, we did not detect DMRs within the MYB10 promoter. Instead, we observed the genome-wide re-distribution of methylation patterns, suggesting different mechanisms underlying methylation patterns of differentially accumulated anthocyanins caused by either bud mutation or environment change. We investigate the dynamic landscape of genome-scale DNA methylation, which is the combined effect of DNA demethylation and RdDM pathway, in the process of light-induced fruit colour formation in pear. This process is regulated by methylation changes on promoter regions of several DEGs. These results provide a DMR-associated DEGs set and new insight into the mechanism of DNA methylation involved in light-induced anthocyanin biosynthesis.


Asunto(s)
Pyrus , Pyrus/genética , Pyrus/metabolismo , Antocianinas/metabolismo , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/metabolismo
12.
Front Plant Sci ; 14: 1324675, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38186606

RESUMEN

Fruit quality is dependent on various factors including flavour, texture and colour. These factors are determined by the ripening process, either climacteric or non-climacteric. In grape berry, which is non-climacteric, the process is signalled by a complex set of hormone changes. Abscisic acid (ABA) is one of the key hormones involved in ripening, while sugar availability also plays a significant role in certain ripening aspects such as anthocyanin production. To understand the relative influence of hormone and sugar signalling in situ can prove problematic due to the physiological and environmental (abiotic and biotic) factors at play in vineyards. Here we report on the use of in vitro detached berry culture to investigate the comparative significance of ABA and sugar in the regulation of Pinot noir berry anthocyanin production under controlled conditions. Using a factorial experimental design, pre-véraison berries were cultured on media with various concentrations of sucrose and ABA. After 15 days of in vitro culture, the berries were analysed for changes in metabolites, hormones and gene expression. Results illustrated a stimulatory effect of sucrose and ABA on enhancing berry colour and a corresponding increase in anthocyanins. Increased ABA concentration was able to boost anthocyanin production in berries when sucrose supply was low. The sucrose and ABA effects on berry anthocyanins were primarily manifested through the up-regulation of transcription factors and other genes in the phenylpropanoid pathway, while in other parts of the pathway a down-regulation of key proanthocyanindin transcription factors and genes corresponded to sharp reduction in berry proanthocyanidins, irrespective of sucrose supply. Similarly, increased ABA was correlated with a significant reduction in berry malic acid and associated regulatory genes. These findings suggest a predominance of berry ABA over berry sugar in coordinating the physiological and genetic regulation of anthocyanins and proanthocyanins in Pinot noir grape berries.

13.
Front Plant Sci ; 13: 965397, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247546

RESUMEN

Highbush blueberry (Vaccinium corymbosum, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.

14.
Front Plant Sci ; 13: 967143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36186009

RESUMEN

Knowledge of the transcriptional regulation of the carotenoid metabolic pathway is still emerging and here, we have misexpressed a key biosynthetic gene in apple to highlight potential transcriptional regulators of this pathway. We overexpressed phytoene synthase (PSY1), which controls the key rate-limiting biosynthetic step, in apple and analyzed its effects in transgenic fruit skin and flesh using two approaches. Firstly, the effects of PSY overexpression on carotenoid accumulation and gene expression was assessed in fruit at different development stages. Secondly, the effect of light exclusion on PSY1-induced fruit carotenoid accumulation was examined. PSY1 overexpression increased carotenoid content in transgenic fruit skin and flesh, with beta-carotene being the most prevalent carotenoid compound. Light exclusion by fruit bagging reduced carotenoid content overall, but carotenoid content was still higher in bagged PSY fruit than in bagged controls. In tissues overexpressing PSY1, plastids showed accelerated chloroplast to chromoplast transition as well as high fluorescence intensity, consistent with increased number of chromoplasts and carotenoid accumulation. Surprisingly, the expression of other carotenoid pathway genes was elevated in PSY fruit, suggesting a feed-forward regulation of carotenogenesis when this enzyme step is mis-expressed. Transcriptome profiling of fruit flesh identified differentially expressed transcription factors (TFs) that also were co-expressed with carotenoid pathway genes. A comparison of differentially expressed genes from both the developmental series and light exclusion  treatment revealed six candidate TFs exhibiting strong correlation with carotenoid accumulation. This combination of physiological, transcriptomic and metabolite data sheds new light on plant carotenogenesis and TFs that may play a role in regulating apple carotenoid biosynthesis.

15.
Front Plant Sci ; 13: 969934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937358

RESUMEN

Light spectral quality is known to affect flavonoid biosynthesis during fruit ripening. However, the response of fruits to different light conditions, when ripening autonomously from the parent plant (detached), has been less explored. In this study, we analyzed the effect of light quality on detached and naturally ripening (attached) non-climacteric wild bilberry (Vaccinium myrtillus L.) fruits accumulating high amounts of anthocyanins and flavonols. Our results indicated contrasting responses for the accumulation of phenolic compounds in the berries in response to red and blue light treatments. For detached berries, supplemental blue light resulted in the highest accumulation of anthocyanins, while naturally ripening berries had elevated accumulation under supplemental red light treatment. Both red and blue supplemental light increased the expression levels of all the major structural genes of the flavonoid pathway during ripening. Notably, the key regulatory gene of anthocyanin biosynthesis, VmMYBA1, was found to express fivefold higher under blue light treatment in the detached berries compared to the control. The red light treatment of naturally ripening berries selectively increased the delphinidin branch of anthocyanins, whereas in detached berries, blue light increased other anthocyanin classes along with delphinidins. In addition, red and far-red light had a positive influence on the accumulation of flavonols, especially quercetin and myricetin glycoside derivatives, in both ripening conditions. Our results of differential light effects on attached and detached berries, which lacks signaling from the mother plant, provide new insights in understanding the light-mediated regulatory mechanisms in non-climacteric fruit ripening.

16.
Front Plant Sci ; 13: 910155, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812927

RESUMEN

Vaccinium berries are regarded as "superfoods" owing to their high concentrations of anthocyanins, flavonoid metabolites that provide pigmentation and positively affect human health. Anthocyanin localization differs between the fruit of cultivated highbush blueberry (V. corymbosum) and wild bilberry (V. myrtillus), with the latter having deep red flesh coloration. Analysis of comparative transcriptomics across a developmental series of blueberry and bilberry fruit skin and flesh identified candidate anthocyanin regulators responsible for this distinction. This included multiple activator and repressor transcription factors (TFs) that correlated strongly with anthocyanin production and had minimal expression in blueberry (non-pigmented) flesh. R2R3 MYB TFs appeared key to the presence and absence of anthocyanin-based pigmentation; MYBA1 and MYBPA1.1 co-activated the pathway while MYBC2.1 repressed it. Transient overexpression of MYBA1 in Nicotiana benthamiana strongly induced anthocyanins, but this was substantially reduced when co-infiltrated with MYBC2.1. Co-infiltration of MYBC2.1 with MYBA1 also reduced activation of DFR and UFGT, key anthocyanin biosynthesis genes, in promoter activation studies. We demonstrated that these TFs operate within a regulatory hierarchy where MYBA1 activated the promoters of MYBC2.1 and bHLH2. Stable overexpression of VcMYBA1 in blueberry elevated anthocyanin content in transgenic plants, indicating that MYBA1 is sufficient to upregulate the TF module and activate the pathway. Our findings identify TF activators and repressors that are hierarchically regulated by SG6 MYBA1, and fine-tune anthocyanin production in Vaccinium. The lack of this TF module in blueberry flesh results in an absence of anthocyanins.

17.
Plant Physiol ; 190(1): 305-318, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35674376

RESUMEN

The ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) plays a central role in light-induced anthocyanin biosynthesis. However, the upstream regulatory factors of COP1 remain poorly understood, particularly in horticultural plants. Here, we identified an MdCOP1-interacting protein, BROAD-COMPLEX, TRAMTRACK AND BRIC A BRAC2 (MdBT2), in apple (Malus domestica). MdBT2 is a BTB protein that directly interacts with and stabilizes MdCOP1 by inhibiting self-ubiquitination. Fluorescence observation and cell fractionation assays showed that MdBT2 increased the abundance of MdCOP1 in the nucleus. Moreover, a series of phenotypic analyses indicated that MdBT2 promoted MdCOP1-mediated ubiquitination and degradation of the MdMYB1 transcription factor, inhibiting the expression of anthocyanin biosynthesis genes and anthocyanin accumulation. Overall, our findings reveal a molecular mechanism by which MdBT2 positively regulates MdCOP1, providing insight into MdCOP1-mediated anthocyanin biosynthesis.


Asunto(s)
Malus , Antocianinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinación
18.
Hortic Res ; 9: uhac083, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35611183

RESUMEN

The genus Vaccinium L. (Ericaceae) contains a wide diversity of culturally and economically important berry crop species. Consumer demand and scientific research in blueberry (Vaccinium spp.) and cranberry (Vaccinium macrocarpon) have increased worldwide over the crops' relatively short domestication history (~100 years). Other species, including bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), and ohelo berry (Vaccinium reticulatum) are largely still harvested from the wild but with crop improvement efforts underway. Here, we present a review article on these Vaccinium berry crops on topics that span taxonomy to genetics and genomics to breeding. We highlight the accomplishments made thus far for each of these crops, along their journey from the wild, and propose research areas and questions that will require investments by the community over the coming decades to guide future crop improvement efforts. New tools and resources are needed to underpin the development of superior cultivars that are not only more resilient to various environmental stresses and higher yielding, but also produce fruit that continue to meet a variety of consumer preferences, including fruit quality and health related traits.

19.
New Phytol ; 235(2): 630-645, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35348217

RESUMEN

Anthocyanins are visual cues for pollination and seed dispersal. Fruit containing anthocyanins also appeals to consumers due to its appearance and health benefits. In kiwifruit (Actinidia spp.) studies have identified at least two MYB activators of anthocyanin, but their functions in fruit and the mechanisms by which they act are not fully understood. Here, transcriptome and small RNA high-throughput sequencing were used to comprehensively identify contributors to anthocyanin accumulation in kiwifruit. Stable overexpression in vines showed that both 35S::MYB10 and MYB110 can upregulate anthocyanin biosynthesis in Actinidia chinensis fruit, and that MYB10 overexpression resulted in anthocyanin accumulation which was limited to the inner pericarp, suggesting that repressive mechanisms underlie anthocyanin biosynthesis in this species. Furthermore, motifs in the C-terminal region of MYB10/110 were shown to be responsible for the strength of activation of the anthocyanic response. Transient assays showed that both MYB10 and MYB110 were not directly cleaved by miRNAs, but that miR828 and its phased small RNA AcTAS4-D4(-) efficiently targeted MYB110. Other miRNAs were identified, which were differentially expressed between the inner and outer pericarp, and cleavage of SPL13, ARF16, SCL6 and F-box1, all of which are repressors of MYB10, was observed. We conclude that it is the differential expression and subsequent repression of MYB activators that is responsible for variation in anthocyanin accumulation in kiwifruit species.


Asunto(s)
Actinidia , MicroARNs , Actinidia/genética , Actinidia/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Plantas/metabolismo
20.
Hortic Res ; 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35039839

RESUMEN

MicroRNA172 (miR172) plays a role in regulating a diverse range of plant developmental processes, including flowering, fruit development and nodulation. However, its role in regulating flavonoid biosynthesis is unclear. In this study, we show that transgenic apple plants over-expressing miR172 show a reduction in red coloration and anthocyanin accumulation in various tissue types. This reduction was consistent with decreased expression of APETALA2 homolog MdAP2_1a (a miR172 target gene), MdMYB10, and targets of MdMYB10, as demonstrated by both RNA-seq and qRT-PCR analyses. The positive role of MdAP2_1a in regulating anthocyanin biosynthesis was supported by the enhanced petal anthocyanin accumulation in transgenic tobacco plants overexpressing MdAP2_1a, and by the reduction in anthocyanin accumulation in apple and cherry fruits transfected with an MdAP2_1a virus-induced-gene-silencing construct. We demonstrated that MdAP2_1a could bind directly to the promoter and protein sequences of MdMYB10 in yeast and tobacco, and enhance MdMYB10 promotor activity. In Arabidopsis, over-expression of miR172 reduced flavonoid (including anthocyanins and flavonols) concentration and RNA transcript abundance of flavonoid genes in plantlets cultured on medium containing 7% sucrose. The anthocyanin content and RNA abundance of anthocyanin genes could be partially restored by using a synonymous mutant of MdAP2_1a, which had lost the miR172 target sequences at mRNA level, but not restored by using a WT MdAP2_1a. These results indicate that miR172 inhibits flavonoid biosynthesis through suppressing the expression of an AP2 transcription factor that positively regulates MdMYB10.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...