Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38786080

RESUMEN

PCSK9 is implicated in familial hypercholesterolemia via targeting the cell surface PCSK9-LDLR complex toward lysosomal degradation. The M2 repeat in the PCSK9's C-terminal domain is essential for its extracellular function, potentially through its interaction with an unidentified "protein X". The M2 repeat was recently shown to bind an R-x-E motif in MHC-class-I proteins (implicated in the immune system), like HLA-C, and causing their lysosomal degradation. These findings suggested a new role of PCSK9 in the immune system and that HLA-like proteins could be "protein X" candidates. However, the participation of each member of the MHC-I protein family in this process and their regulation of PCSK9's function have yet to be determined. Herein, we compared the implication of MHC-I-like proteins such as HFE (involved in iron homeostasis) and HLA-C on the extracellular function of PCSK9. Our data revealed that the M2 domain regulates the intracellular sorting of the PCSK9-LDLR complex to lysosomes, and that HFE is a new target of PCSK9 that inhibits its activity on the LDLR, whereas HLA-C enhances its function. This work suggests the potential modulation of PCSK9's functions through interactions of HFE and HLA-C.


Asunto(s)
Antígenos HLA-C , Proteína de la Hemocromatosis , Lisosomas , Proproteína Convertasa 9 , Transporte de Proteínas , Receptores de LDL , Humanos , Receptores de LDL/metabolismo , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Proteína de la Hemocromatosis/metabolismo , Proteína de la Hemocromatosis/genética , Antígenos HLA-C/metabolismo , Lisosomas/metabolismo , Células HEK293 , Unión Proteica
2.
Metabolism ; 150: 155736, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967646

RESUMEN

BACKGROUND: Epidemiological evidence links the proprotein convertase subtilisin/kexin 7 (PCSK7) to triglyceride (TG) metabolism. We associated the known PCSK7 gain-of-function non-coding SNP rs236918 with higher levels of plasma apolipoprotein B (apoB) and the loss-of-function coding variant p.Pro777Leu (SNP rs201598301) with lower apoB and TG. Herein, we aimed to unravel the in vivo role of liver PCSK7. METHODS: We biochemically defined the functional role of PCSK7 in lipid metabolism using hepatic cell lines and Pcsk7-/- mice. Our findings were validated following subcutaneous administration of hepatocyte-targeted N-acetylgalactosamine (GalNAc)-antisense oligonucleotides (ASOs) against Pcsk7. RESULTS: Independent of its proteolytic activity, membrane-bound PCSK7 binds apoB100 in the endoplasmic reticulum and enhances its secretion. Mechanistically, the loss of PCSK7/Pcsk7 leads to apoB100 degradation, triggering an unfolded protein response, autophagy, and ß-oxidation, eventually reducing lipid accumulation in hepatocytes. Non-alcoholic fatty liver disease (NAFLD) was induced by a 12-week high fat/fructose/cholesterol diet in wild type (WT) and Pcsk7-/- mice that were then allowed to recover on a 4-week control diet. Pcsk7-/- mice recovered more effectively than WT mice from all NAFLD-related liver phenotypes. Finally, subcutaneous administration of GalNAc-ASOs targeting hepatic Pcsk7 to WT mice validated the above results. CONCLUSIONS: Our data reveal hepatic PCSK7 as one of the major regulators of apoB, and its absence reduces apoB secretion from hepatocytes favoring its ubiquitination and degradation by the proteasome. This results in a cascade of events, eventually reducing hepatic lipid accumulation, thus supporting the notion of silencing PCSK7 mRNA in hepatocytes for targeting NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Subtilisina/metabolismo , Triglicéridos/metabolismo , Hígado/metabolismo , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Proproteína Convertasas/metabolismo , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo
3.
Viruses ; 15(2)2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36851576

RESUMEN

Proprotein convertases activate various envelope glycoproteins and participate in cellular entry of many viruses. We recently showed that the convertase furin is critical for the infectivity of SARS-CoV-2, which requires cleavage of its spike protein (S) at two sites: S1/S2 and S2'. This study investigates the implication of the two cholesterol-regulating convertases SKI-1 and PCSK9 in SARS-CoV-2 entry. The assays used were cell-to-cell fusion in HeLa cells and pseudoparticle entry into Calu-3 cells. SKI-1 increased cell-to-cell fusion by enhancing the activation of SREBP-2, whereas PCSK9 reduced cell-to-cell fusion by promoting the cellular degradation of ACE2. SKI-1 activity led to enhanced S2' formation, which was attributed to increased metalloprotease activity as a response to enhanced cholesterol levels via activated SREBP-2. However, high metalloprotease activity resulted in the shedding of S2' into a new C-terminal fragment (S2″), leading to reduced cell-to-cell fusion. Indeed, S-mutants that increase S2″ formation abolished S2' and cell-to-cell fusion, as well as pseudoparticle entry, indicating that the formation of S2″ prevents SARS-CoV-2 cell-to-cell fusion and entry. We next demonstrated that PCSK9 enhanced the cellular degradation of ACE2, thereby reducing cell-to-cell fusion. However, different from the LDLR, a canonical target of PCSK9, the C-terminal CHRD domain of PCSK9 is dispensable for the PCSK9-induced degradation of ACE2. Molecular modeling suggested the binding of ACE2 to the Pro/Catalytic domains of mature PCSK9. Thus, both cholesterol-regulating convertases SKI-1 and PCSK9 can modulate SARS-CoV-2 entry via two independent mechanisms.


Asunto(s)
COVID-19 , Proproteína Convertasa 9 , Humanos , Enzima Convertidora de Angiotensina 2 , Fusión Celular , Células HeLa , Metaloproteasas , Proproteína Convertasa 9/genética , SARS-CoV-2 , Proteína 1 de Unión a los Elementos Reguladores de Esteroles
5.
J Virol ; 96(8): e0012822, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35343766

RESUMEN

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRRAR685↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models. In this study, for the first time we unambiguously identified by proteomics the fusion activation site S2' as KPSKR815↓ (the underlined basic amino acids refer to critical residues needed for the furin recognition) and demonstrated that this cleavage was strongly enhanced by ACE2 engagement with the S protein. Novel pharmacological furin inhibitors (BOS inhibitors) effectively blocked endogenous S protein processing at both sites in HeLa cells, and SARS-CoV-2 infection of lung-derived Calu-3 cells was completely prevented by combined inhibitors of furin (BOS) and type II transmembrane serine protease 2 (TMPRSS2) (camostat). Quantitative analyses of cell-to-cell fusion and S protein processing revealed that ACE2 shedding by TMPRSS2 was required for TMPRSS2-mediated enhancement of fusion in the absence of S1/S2 priming. We further demonstrated that the collectrin dimerization domain of ACE2 was essential for the effect of TMPRSS2 on cell-to-cell fusion. Overall, our results indicate that furin and TMPRSS2 act synergistically in viral entry and infectivity, supporting the combination of furin and TMPRSS2 inhibitors as potent antivirals against SARS-CoV-2. IMPORTANCE SARS-CoV-2, the etiological agent of COVID-19, has so far resulted in >6.1 million deaths worldwide. The spike protein (S) of the virus directs infection of the lungs and other tissues by binding the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. Cleavage at S1/S2 induces a conformational change favoring the S protein recognition by ACE2. The S2' cleavage is critical for triggering membrane fusion and virus entry into host cells. Our study highlights the complex dynamics of interaction between the S protein, ACE2, and the host proteases furin and TMPRSS2 during SARS-CoV-2 entry and suggests that the combination of a nontoxic furin inhibitor with a TMPRSS2 inhibitor significantly reduces viral entry in lung cells, as evidenced by an average synergistic ∼95% reduction of viral infection. This represents a powerful novel antiviral approach to reduce viral spread in individuals infected by SARS-CoV-2 or future related coronaviruses.


Asunto(s)
COVID-19 , Furina , SARS-CoV-2 , Serina Endopeptidasas , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/patología , COVID-19/virología , Furina/metabolismo , Células HeLa , Humanos , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
6.
J Biol Chem ; 297(4): 101177, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34508778

RESUMEN

The hepatic carbohydrate-recognizing asialoglycoprotein receptor (ASGR1) mediates the endocytosis/lysosomal degradation of desialylated glycoproteins following binding to terminal galactose/N-acetylgalactosamine. Human heterozygote carriers of ASGR1 deletions exhibit ∼34% lower risk of coronary artery disease and ∼10% to 14% reduction of non-HDL cholesterol. Since the proprotein convertase PCSK9 is a major degrader of the low-density lipoprotein receptor (LDLR), we investigated the degradation and functionality of LDLR and/or PCSK9 by endogenous/overexpressed ASGR1 using Western blot and immunofluorescence in HepG2-naïve and HepG2-PCSK9-knockout cells. ASGR1, like PCSK9, targets LDLR, and both independently interact with/enhance the degradation of the receptor. This lack of cooperativity between PCSK9 and ASGR1 was confirmed in livers of wildtype (WT) and Pcsk9-/- mice. ASGR1 knockdown in HepG2-naïve cells significantly increased total (∼1.2-fold) and cell-surface (∼4-fold) LDLR protein. In HepG2-PCSK9-knockout cells, ASGR1 silencing led to ∼2-fold higher levels of LDLR protein and DiI (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate)-LDL uptake associated with ∼9-fold increased cell-surface LDLR. Overexpression of WT-ASGR1/2 primarily reduced levels of immature non-O-glycosylated LDLR (∼110 kDa), whereas the triple Ala-mutant of Gln240/Trp244/Glu253 (characterized by loss of carbohydrate binding) reduced expression of the mature form of LDLR (∼150 kDa), suggesting that ASGR1 binds the LDLR in both a sugar-dependent and -independent fashion. The protease furin cleaves ASGR1 at the RKMK103↓ motif into a secreted form, likely resulting in a loss of function on LDLR. Altogether, we demonstrate that LDLR is the first example of a liver-receptor ligand of ASGR1. We conclude that silencing of ASGR1 and PCSK9 may lead to higher LDL uptake by hepatocytes, thereby providing a novel approach to further reduce LDL cholesterol levels.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Furina/metabolismo , Hígado/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Animales , Receptor de Asialoglicoproteína/genética , Furina/genética , Células HEK293 , Células Hep G2 , Humanos , Ratones , Ratones Noqueados , Proproteína Convertasa 9/genética , Receptores de LDL/genética
7.
Front Endocrinol (Lausanne) ; 12: 690681, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149625

RESUMEN

Fibroblast growth factor 23 (FGF23) is a hormone secreted from fully differentiated osteoblasts and osteocytes that inhibits phosphate reabsorption by kidney proximal tubules. The full-length (i.e., intact) protein mediates FGF23 endocrine functions, while endoproteolytic cleavage at a consensus cleavage sequence for the proprotein convertases (PCs) inactivates FGF23. Two PCs, furin and PC5, were shown to cleave FGF23 in vitro at RHTR179↓, but whether they are fulfilling this function in vivo is currently unknown. To address this question, we used here mice lacking either or both furin and PC5 in cell-specific manners and mice lacking the paired basic amino acid-cleaving enzyme 4 (PACE4) in all cells. Our analysis shows that furin inactivation in osteoblasts and osteocytes results in a 25% increase in circulating intact FGF23, without any significant impact on serum phosphate levels, whether mice are maintained on a normal or a low phosphate diet. Under conditions of iron deficiency, FGF23 is normally processed in control mice, but its processing is impaired in mice lacking furin in osteoblasts and osteocytes. In contrast, FGF23 is normally cleaved following erythropoietin or IL-1ß injections in mice lacking furin or both furin and PC5, and in PACE4-deficient mice. Altogether, these studies suggest that furin is only partially responsible for FGF23 cleavage under certain conditions in vivo. The processing of FGF23 may therefore involve the redundant action of multiple PCs or of other peptidases in osteoblasts, osteocytes and hematopoietic cells.


Asunto(s)
Factor-23 de Crecimiento de Fibroblastos/metabolismo , Furina/metabolismo , Osteoblastos/metabolismo , Osteocitos/metabolismo , Proproteína Convertasa 5/metabolismo , Animales , Médula Ósea/metabolismo , Factor-23 de Crecimiento de Fibroblastos/genética , Furina/genética , Deficiencias de Hierro/genética , Deficiencias de Hierro/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Proproteína Convertasa 5/genética
8.
Artículo en Inglés | MEDLINE | ID: mdl-33992809

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays an important role in cholesterol homeostasis by promoting the degradation of the LDL receptor (LDLR). PCSK9 loss-of-function mutations are associated with increased fasting plasma glucose levels and slightly elevated risk of type 2-diabetes. Considering the known detrimental effects of cholesterol accumulation in ß-cell, and the widespread use of PCSK9 inhibitors to treat hypercholesterolemia, it is important to gain insight into the role of pancreatic PCSK9 in glucose homeostasis and ß-cell function. We generated the first ß-cell-specific KO of PCSK9 (ßKO). PCSK9 mRNA and protein expression were reduced by 48% and 78% in ßKO islets, respectively, indicating that ß-cells constitute a major site of PCSK9 expression. In islets, loss of ß-cell PCSK9 resulted in unchanged LDLR protein levels, but reduced LDLR mRNA, indicating that cholesterol internalization is enhanced and that ß-cell PCSK9 promotes LDLR degradation. In contrast, whole body PCSK9 KO mice exhibited 2-fold higher LDLR protein levels in islets and a stable expression of cholesterogenic genes. Whole body KO and ßKO mice presented normal glucose tolerance, insulin release in response to glucose load and insulin sensitivity. Ex vivo glucose-stimulated insulin secretion in presence or absence of fatty acids was similar in WT and KO islets. Like KO mice, individuals carrying loss-of-function PCSK9 variants may be protected from cholesterol-induced toxicity due to reduced circulating cholesterol levels. Using both whole body KO or ßKO models, our data demonstrate that PCSK9 deletion in mouse does not have any toxic effect on ß-cell function and glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Homeostasis , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Proproteína Convertasa 9/deficiencia , Proproteína Convertasa 9/genética , Animales , Activación Enzimática , Técnicas de Inactivación de Genes , Ratones
9.
FEBS J ; 287(16): 3565-3578, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31945259

RESUMEN

The locus of the human proprotein convertase subtilisin-kexin type-7 (PC7) gene (PCSK7) is on chromosome 11q23.3 close to the gene cluster APOA5/APOA4/APOC3/APOA1, a region implicated in the regulation of lipoprotein metabolism. A GWAS reported the association of PCSK7 SNPs with plasma triglyceride (TG), and exome sequencing of African Americans revealed the association of a low-frequency coding variant of PC7 (R504H; SNP rs142953140) with a ~ 30% TG reduction. Another PCSK7 SNP rs508487 is in linkage disequilibrium with a promoter variant of the liver-derived apolipoprotein A-V (apoA-V), an indirect activator of the lipoprotein lipase (LpL), and is associated with elevated TG levels. We thus hypothesized that PC7 regulates the levels/activity of apoA-V. Studies in the human hepatic cell line HuH7 revealed that wild-type (WT) PC7 and its endoplasmic reticulum (ER)-retained forms bind to and enhance the degradation of human apoA-V in acidic lysosomes in a nonenzymatic fashion. PC7-induced degradation of apoA-V is inhibited by bafilomycin A1 and the alkalinizing agents: chloroquine and NH4 Cl. Thus, the PC7-induced apoA-V degradation implicates an ER-lysosomal communication inhibited by bafilomycin A1. In vitro, the natural R504H mutant enhances PC7 Ser505 phosphorylation at the structurally exposed Ser-X-Glu507 motif recognized by the secretory kinase Fam20C. Co-expression of the phosphomimetic PC7-S505E with apoA-V resulted in lower degradation compared to WT, suggesting that Ser505 phosphorylation of PC7 lowers TG levels via reduced apoA-V degradation. In agreement, in Pcsk7-/- mice fed high-fat diet, plasma apoA-V levels and adipocyte LpL activity are increased, providing an in vivo mechanistic link for a role of liver PC7 in enhanced TG storage in adipocytes.


Asunto(s)
Apolipoproteína A-V/metabolismo , Hígado/metabolismo , Subtilisinas/genética , Triglicéridos/metabolismo , Animales , Apolipoproteína A-V/sangre , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Hepatocitos/metabolismo , Humanos , Lisosomas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Subtilisinas/metabolismo , Triglicéridos/sangre , Secuenciación del Exoma/métodos
10.
Cancers (Basel) ; 12(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31877668

RESUMEN

Colorectal cancer liver metastases (CRCLM) that receive their blood supply via vessel co-option are associated with a poor response to anti-angiogenic therapy. Angiopoietins (Ang1 and Ang2) with their Tyrosine-protein kinase receptor (Tie2) have been shown to support vessel co-option. We demonstrate significantly higher expression of Ang1 in hepatocytes adjacent to the tumor region of human chemonaïve and treated co-opting (replacement histopathological growth patterns: RHGP) tumors. To investigate the role of the host Ang1 expression, Ang1 knockout (KO) mice were injected intra-splenically with metastatic MC-38 colon cancer cells that develop co-opting liver metastases. We observed a reduction in the number of liver metastases and interestingly, for the first time, the development of angiogenic driven desmoplastic (DHGP) liver metastases. In addition, in-vitro, knockout of Ang1 in primary hepatocytes inhibited viability, migration and invasion ability of MC-38 cells. We also demonstrate that Ang 1 alone promotes the migration and growth of both human and mouse colon cancer cell lines These results provide evidence that high expression of Ang1 in the host liver is important to support vessel co-option (RHGP lesions) and when inhibited, favours the formation of angiogenic driven liver metastases (DHGP lesions).

11.
Arterioscler Thromb Vasc Biol ; 39(10): 1996-2013, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31553664

RESUMEN

OBJECTIVE: PCSK9 (proprotein convertase subtilisin-kexin 9) enhances the degradation of the LDLR (low-density lipoprotein receptor) in endosomes/lysosomes. This study aimed to determine the sites of PCSK9 phosphorylation at Ser-residues and the consequences of such posttranslational modification on the secretion and activity of PCSK9 on the LDLR. Approach and Results: Fam20C (family with sequence similarity 20, member C) phosphorylates serines in secretory proteins containing the motif S-X-E/phospho-Ser, including the cholesterol-regulating PCSK9. In situ hybridization of Fam20C mRNA during development and in adult mice revealed a wide tissue distribution, including liver, but not small intestine. Here, we show that Fam20C phosphorylates PCSK9 at Serines 47, 666, 668, and 688. In hepatocytes, phosphorylation enhances PCSK9 secretion and maximizes its induced degradation of the LDLR via the extracellular and intracellular pathways. Replacing any of the 4 Ser by the phosphomimetic Glu or Asp enhanced PCSK9 activity only when the other sites are phosphorylated, whereas Ala substitutions reduced it, as evidenced by Western blotting, Elisa, and LDLR-immunolabeling. This newly uncovered PCSK9/LDLR regulation mechanism refines our understanding of the implication of global PCSK9 phosphorylation in the modulation of LDL-cholesterol and rationalizes the consequence of natural mutations, for example, S668R and E670G. Finally, the relationship of Ser-phosphorylation to the implication of PCSK9 in regulating LDL-cholesterol in the neurological Fragile X-syndrome disorder was investigated. CONCLUSIONS: Ser-phosphorylation of PCSK9 maximizes both its secretion and activity on the LDLR. Mass spectrometric approaches to measure such modifications were developed and applied to quantify the levels of bioactive PCSK9 in human plasma under normal and pathological conditions.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica , Hiperlipoproteinemia Tipo II/genética , Proproteína Convertasa 9/metabolismo , Receptores de LDL/genética , Animales , Western Blotting , Células Cultivadas , Células Hep G2 , Hepatocitos/metabolismo , Humanos , Hiperlipoproteinemia Tipo II/fisiopatología , Hibridación in Situ/métodos , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Fosforilación/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptores de LDL/metabolismo , Sensibilidad y Especificidad
12.
Biol Chem ; 399(12): 1363-1374, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30044755

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that binds and escorts the low density lipoprotein receptor (LDLR) into the lysosomal degradation pathway. Prescribed monoclonal antibodies (mAbs) against PCSK9 prevent its binding to the LDLR, and result in ~60% lower LDL cholesterol (LDLc) levels. Although efficient, mAbs are expensive. Hence other PCSK9 inhibitors are needed. For screening purpose, we developed C57BL/6J mice expressing the human PCSK9 gene under the control of its own promoter, but lacking endogenous mouse PCSK9. All lines recapitulate the endogenous PCSK9 expression pattern. The Tg2 line that expresses physiological levels of human PCSK9 (hPCSK9) was selected to characterize the inhibitory properties of a previously reported single domain antibody (sdAb), PKF8-mFc, which binds the C-terminal domain of PCSK9. Upon intraveinous injection of 10 mg/kg, PKF8-mFc and the mAb evolocumab neutralized ~50% and 100% of the hPCSK9 impact on total cholesterol (TC) levels, respectively, but PKF8-mFc had a more sustained effect. PKF8-mFc barely affected hPCSK9 levels, whereas evolocumab promoted a 4-fold increase 3 days post-injection, suggesting very different inhibitory mechanisms. The present study also shows that the new transgenic mice are well suited to screen a variety of hPCSK9 inhibitors.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Cisteína/antagonistas & inhibidores , Histidina/antagonistas & inhibidores , Inhibidores de PCSK9 , Animales , Anticuerpos Monoclonales Humanizados , Cisteína/metabolismo , Genotipo , Histidina/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proproteína Convertasa 9/deficiencia , Proproteína Convertasa 9/metabolismo
13.
Bone ; 107: 45-55, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29126984

RESUMEN

Seven proprotein convertases cleave the basic amino acid consensus sequence K/R-Xn-K/R↓ (where n=0, 2, 4 or 6 variable amino acids) to activate precursor proteins. Despite similarities in substrate specificity, basic amino acid-specific proprotein convertases have a distinct tissue distribution allowing for enzymatic actions on tissue-resident substrates. Proprotein convertase 5/6 (PC5/6) has two splice variants - soluble PC5/6A and membrane-bound PC5/6B - and is expressed during mouse development in many tissues including bone and tooth, but little is known about the substrates for PC5/6 therein. Osteopontin (OPN) is an abundant bone extracellular matrix protein with roles in mineralization, cell adhesion and cell migration, and it has putative consensus sequence sites for cleavage by PC5/6, which may modify its function in bone. Since PC5/6-knockout mouse embryos show developmental abnormalities, and reduced overall mineralization, we designed this study to determine whether OPN is a substrate of PC5/6. In silico analysis of OPN protein sequences identified four potential PC5/6 consensus cleavage sites in human OPN, and three sites - including a noncanonical sequence - in mouse OPN. Ex vivo co-transfections with human OPN revealed complete OPN cleavage reducing full-length OPN (~70kDa) to an N-terminal fragment migrating at ~50kDa and two C-terminal fragments at ~18kDa and ~16kDa. Direct cleavage of OPN by PC5/6A - the predominant isoform expressed in human osteoblast cells - was confirmed by cell-free enzyme-substrate assays and by mass spectrometry. The latter was also used to investigate potential cleavage sites. Co-transfections of PC5/6 and mouse OPN showed partial cleavage of OPN into a C-terminal OPN fragment migrating at ~30kDa and an N-terminal fragment migrating at ~29kDa. Micro-computed tomography of PC5/6-knockout embryos at E18.5 confirmed a reduction in mineralized bone, and in situ hybridization performed on cryo-sections of normal mouse bone using Pcsk5 and Opn anti-sense and control-sense cRNA probes indicated the co-localization of the expression of these genes in bone cells. This mRNA expression profile was supported by semi-quantitative RT-PCR using osteoblast primary cultures, and cultured MC3T3-E1 osteoblast and MLO-Y4 osteocyte cell lines. Immunoblotting for OPN from mouse bone extracts showed altered OPN processing in PC5/6-knockout mice compared to wildtype mice. OPN fragments migrated at ~25kDa and ~16kDa in wildtype bone and were not present in PC5/6-deficient bone. In conclusion, this study demonstrates that Pcsk5 is expressed in bone-forming cells, and that OPN is a novel substrate for PC5/6. Cleavage of OPN by PC5/6 may modify the function of OPN in bone and/or modulate other enzymatic cleavages of OPN, leading to alterations in the bone phenotype.


Asunto(s)
Huesos/metabolismo , Osteopontina/metabolismo , Proproteína Convertasa 5/metabolismo , Animales , Calcificación Fisiológica/fisiología , Humanos , Ratones , Ratones Noqueados , Especificidad por Sustrato
14.
J Clin Invest ; 127(11): 4104-4117, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28972540

RESUMEN

Osteocalcin (OCN) is an osteoblast-derived hormone that increases energy expenditure, insulin sensitivity, insulin secretion, and glucose tolerance. The cDNA sequence of OCN predicts that, like many other peptide hormones, OCN is first synthesized as a prohormone (pro-OCN). The importance of pro-OCN maturation in regulating OCN and the identity of the endopeptidase responsible for pro-OCN cleavage in osteoblasts are still unknown. Here, we show that the proprotein convertase furin is responsible for pro-OCN maturation in vitro and in vivo. Using pharmacological and genetic experiments, we also determined that furin-mediated pro-OCN cleavage occurred independently of its γ-carboxylation, a posttranslational modification that is known to hamper OCN endocrine action. However, because pro-OCN is not efficiently decarboxylated and activated during bone resorption, inactivation of furin in osteoblasts in mice resulted in decreased circulating levels of undercarboxylated OCN, impaired glucose tolerance, and reduced energy expenditure. Furthermore, we show that Furin deletion in osteoblasts reduced appetite, a function not modulated by OCN, thus suggesting that osteoblasts may secrete additional hormones that regulate different aspects of energy metabolism. Accordingly, the metabolic defects of the mice lacking furin in osteoblasts became more apparent under pair-feeding conditions. These findings identify furin as an important regulator of bone endocrine function.


Asunto(s)
Huesos/enzimología , Furina/fisiología , Osteocalcina/metabolismo , Secuencia de Aminoácidos , Animales , Huesos/citología , Células Cultivadas , Sistema Endocrino , Metabolismo Energético , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteoblastos/enzimología , Proproteína Convertasa 5/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteolisis , Células RAW 264.7
16.
J Biol Chem ; 292(25): 10564-10573, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28468828

RESUMEN

Protein C, a secretory vitamin K-dependent anticoagulant serine protease, inactivates factors Va/VIIIa. It is exclusively synthesized in liver hepatocytes as an inactive zymogen (proprotein C). In humans, thrombin cleavage of the propeptide at PR221↓ results in activated protein C (APC; residues 222-461). However, the propeptide is also cleaved by a furin-like proprotein convertase(s) (PCs) at KKRSHLKR199↓ (underlined basic residues critical for the recognition by PCs), but the order of cleavage is unknown. Herein, we present evidence that at the surface of COS-1 cells, mouse proprotein C is first cleaved by the convertases furin, PC5/6A, and PACE4. In mice, this cleavage occurs at the equivalent site, KKRKILKR198↓, and requires the presence of Arg198 at P1 and a combination of two other basic residues at either P2 (Lys197), P6 (Arg193), or P8 (Lys191) positions. Notably, the thrombin-resistant R221A mutant is still cleaved by these PCs, revealing that convertase cleavage can precede thrombin activation. This conclusion was supported by the fact that the APC-specific activity in the medium of COS-1 cells is exclusively dependent on prior cleavage by the convertases, because both R198A and R221A lack protein C activity. Primary cultures of hepatocytes derived from wild-type or hepatocyte-specific furin, PC5/6, or complete PACE4 knock-out mice suggested that the cleavage of overexpressed proprotein C is predominantly performed by furin intracellularly and by all three proprotein convertases at the cell surface. Indeed, plasma analyses of single-proprotein convertase-knock-out mice showed that loss of the convertase furin or PC5/6 in hepatocytes results in a ∼30% decrease in APC levels, with no significant contribution from PACE4. We conclude that prior convertase cleavage of protein C in hepatocytes is critical for its thrombin activation.


Asunto(s)
Hepatocitos/enzimología , Hígado/enzimología , Proproteína Convertasa 5/metabolismo , Proteína C/metabolismo , Sustitución de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Activación Enzimática/fisiología , Células Hep G2 , Humanos , Ratones , Ratones Noqueados , Mutación Missense , Proproteína Convertasa 5/genética , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Proteína C/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Trombina/genética , Trombina/metabolismo
17.
J Biol Chem ; 292(5): 1573-1590, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27998977

RESUMEN

Familial hypercholesterolemia (FH) is characterized by severely elevated low density lipoprotein (LDL) cholesterol. Herein, we identified an FH patient presenting novel compound heterozygote mutations R410S and G592E of the LDL receptor (LDLR). The patient responded modestly to maximum rosuvastatin plus ezetimibe therapy, even in combination with a PCSK9 monoclonal antibody injection. Using cell biology and molecular dynamics simulations, we aimed to define the underlying mechanism(s) by which these LDLR mutations affect LDL metabolism and lead to hypercholesterolemia. Our data showed that the LDLR-G592E is a class 2b mutant, because it mostly failed to exit the endoplasmic reticulum and was degraded. Even though LDLR-R410S and LDLR-WT were similar in levels of cell surface and total receptor and bound equally well to LDL or extracellular PCSK9, the LDLR-R410S was resistant to exogenous PCSK9-mediated degradation in endosomes/lysosomes and showed reduced LDL internalization and degradation relative to LDLR-WT. Evidence is provided for a tighter association of LDL with LDLR-R410S at acidic pH, a reduced LDL delivery to late endosomes/lysosomes, and an increased release in the medium of the bound/internalized LDL, as compared with LDLR-WT. These data suggested that LDLR-R410S recycles loaded with its LDL-cargo. Our findings demonstrate that LDLR-R410S represents an LDLR loss-of-function through a novel class 8 FH-causing mechanism, thereby rationalizing the observed phenotype.


Asunto(s)
Endosomas/metabolismo , Hiperlipoproteinemia Tipo II , Lipoproteínas LDL/metabolismo , Lisosomas/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL , Sustitución de Aminoácidos , Endosomas/genética , Femenino , Humanos , Hiperlipoproteinemia Tipo II/genética , Hiperlipoproteinemia Tipo II/metabolismo , Lisosomas/genética , Masculino , Mutación Missense , Unión Proteica , Receptores de LDL/genética , Receptores de LDL/metabolismo
19.
J Biol Chem ; 291(47): 24676-24687, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27758865

RESUMEN

The mechanism of LDL receptor (LDLR) degradation mediated by the proprotein convertase subtilisin/kexin type 9 (PCSK9) has been extensively studied; however, many steps within this process remain unclear and still require characterization. Recent studies have shown that PCSK9 lacking its Cys/His-rich domain can still promote LDLR internalization, but the complex does not reach the lysosome suggesting the presence of an additional interaction partner(s). In this study we carried out an unbiased screening approach to identify PCSK9-interacting proteins in the HepG2 cells' secretome using co-immunoprecipitation combined with mass spectrometry analyses. Several interacting proteins were identified, including glypican-3 (GPC3), phospholipid transfer protein, matrilin-3, tissue factor pathway inhibitor, fibrinogen-like 1, and plasminogen activator inhibitor-1. We then validated these interactions by co-immunoprecipitation and Western blotting. Furthermore, functional validation was examined by silencing each candidate protein in HepG2 cells using short hairpin RNAs to determine their effect on LDL uptake and LDLR levels. Only GPC3 and phospholipid transfer protein silencing in HepG2 cells significantly increased LDL uptake in these cells and displayed higher total LDLR protein levels compared with control cells. Moreover, our study provides the first evidence that GPC3 can modulate the PCSK9 extracellular activity as a competitive binding partner to the LDLR in HepG2 cells.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Glipicanos/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Proproteína Convertasa 9/metabolismo , Receptores de LDL/metabolismo , Carcinoma Hepatocelular/genética , Glipicanos/genética , Células Hep G2 , Humanos , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Neoplasias Hepáticas/genética , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Proteínas de Neoplasias/genética , Proproteína Convertasa 9/genética , Unión Proteica , Receptores de LDL/genética
20.
J Biol Chem ; 291(32): 16659-71, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27284008

RESUMEN

Single domain antibodies (sdAbs) correspond to the antigen-binding domains of camelid antibodies. They have the same antigen-binding properties and specificity as monoclonal antibodies (mAbs) but are easier and cheaper to produce. We report here the development of sdAbs targeting human PCSK9 (proprotein convertase subtilisin/kexin type 9) as an alternative to anti-PCSK9 mAbs. After immunizing a llama with human PCSK9, we selected four sdAbs that bind PCSK9 with a high affinity and produced them as fusion proteins with a mouse Fc. All four sdAb-Fcs recognize the C-terminal Cys-His-rich domain of PCSK9. We performed multiple cellular assays and demonstrated that the selected sdAbs efficiently blocked PCSK9-mediated low density lipoprotein receptor (LDLR) degradation in cell lines, in human hepatocytes, and in mouse primary hepatocytes. We further showed that the sdAb-Fcs do not affect binding of PCSK9 to the LDLR but rather block its induced cellular LDLR degradation. Pcsk9 knock-out mice expressing a human bacterial artificial chromosome (BAC) transgene were generated, resulting in plasma levels of ∼300 ng/ml human PCSK9. Mice were singly or doubly injected with the best sdAb-Fc and analyzed at day 4 or 11, respectively. After 4 days, mice exhibited a 32 and 44% decrease in the levels of total cholesterol and apolipoprotein B and ∼1.8-fold higher liver LDLR protein levels. At 11 days, the equivalent values were 24 and 46% and ∼2.3-fold higher LDLR proteins. These data constitute a proof-of-principle for the future usage of sdAbs as PCSK9-targeting drugs that can efficiently reduce LDL-cholesterol, and as tools to study the Cys-His-rich domain-dependent sorting the PCSK9-LDLR complex to lysosomes.


Asunto(s)
LDL-Colesterol/metabolismo , Proproteína Convertasa 9/metabolismo , Proteolisis/efectos de los fármacos , Receptores de LDL/metabolismo , Anticuerpos de Dominio Único/farmacología , Animales , LDL-Colesterol/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Inhibidores de PCSK9 , Proproteína Convertasa 9/genética , Receptores de LDL/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...