Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Rev Med Liege ; 79(3): 191-194, 2024 Mar.
Artículo en Francés | MEDLINE | ID: mdl-38487915

RESUMEN

The concept of «metabolic syndrome¼ was brought to the forefront in the early 2000s in international literature, but this interest seems to have faded somewhat in recent years. However, this constellation of cardiovascular risk factors should not be neglected. Taken individually, they hardly seem problematic, but when they are present within the same individual, they significantly increase the risk of cardiovascular morbidity and mortality. This clinical vignette aims to draw attention to the usefulness of the search for metabolic syndrome in clinical practic.


Le concept de «syndrome métabolique¼ a été mis en avant de la scène au début des années 2000 dans la littérature internationale, mais cet intérêt semble s'être quelque peu estompé au cours des dernières années. Il convient cependant de ne pas négliger cette constellation de facteurs de risque cardiovasculaire qui, pris individuellement, ne paraissent guère problématiques, mais qui, lorsqu'ils co-existent chez une même personne, augmentent sensiblement le risque de morbi-mortalité. Cette vignette clinique a pour but d'attirer l'attention sur l'importance de la recherche d'un syndrome métabolique dans la pratique clinique.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Humanos , Síndrome Metabólico/complicaciones , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/metabolismo , Factores de Riesgo , Enfermedades Cardiovasculares/etiología , Diabetes Mellitus Tipo 2/complicaciones
2.
Mol Metab ; 80: 101877, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218538

RESUMEN

OBJECTIVE: Aggregation of human islet amyloid polypeptide (hIAPP), a ß-cell secretory product, leads to islet amyloid deposition, islet inflammation and ß-cell loss in type 2 diabetes (T2D), but the mechanisms that underlie this process are incompletely understood. Receptor interacting protein kinase 3 (RIPK3) is a pro-death signaling molecule that has recently been implicated in amyloid-associated brain pathology and ß-cell cytotoxicity. Here, we evaluated the role of RIPK3 in amyloid-induced ß-cell loss using a humanized mouse model of T2D that expresses hIAPP and is prone to islet amyloid formation. METHODS: We quantified amyloid deposition, cell death and caspase 3/7 activity in islets isolated from WT, Ripk3-/-, hIAPP and hIAPP; Ripk3-/- mice in real time, and evaluated hIAPP-stimulated inflammation in WT and Ripk3-/- bone marrow derived macrophages (BMDMs) in vitro. We also characterized the role of RIPK3 in glucose stimulated insulin secretion (GSIS) in vitro and in vivo. Finally, we examined the role of RIPK3 in high fat diet (HFD)-induced islet amyloid deposition, ß-cell loss and glucose homeostasis in vivo. RESULTS: We found that amyloid-prone hIAPP mouse islets exhibited increased cell death and caspase 3/7 activity compared to amyloid-free WT islets in vitro, and this was associated with increased RIPK3 expression. hIAPP; Ripk3-/- islets were protected from amyloid-induced cell death compared to hIAPP islets in vitro, although amyloid deposition and caspase 3/7 activity were not different between genotypes. We observed that macrophages are a source of Ripk3 expression in isolated islets, and that Ripk3-/- BMDMs were protected from hIAPP-stimulated inflammatory gene expression (Tnf, Il1b, Nos2). Following 52 weeks of HFD feeding, islet amyloid-prone hIAPP mice exhibited impaired glucose tolerance and decreased ß-cell area compared to WT mice in vivo, whereas hIAPP; Ripk3-/- mice were protected from these impairments. CONCLUSIONS: In conclusion, loss of RIPK3 protects from amyloid-induced inflammation and islet cell death in vitro and amyloid-induced ß-cell loss and glucose intolerance in vivo. We propose that therapies targeting RIPK3 may reduce islet inflammation and ß-cell loss and improve glucose homeostasis in the pathogenesis of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2 , Intolerancia a la Glucosa , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Humanos , Ratones , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Caspasa 3/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa , Inflamación , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética
3.
Rev Med Suisse ; 19(838): 1486-1490, 2023 Aug 23.
Artículo en Francés | MEDLINE | ID: mdl-37610191

RESUMEN

Dietary management of type 2 diabetes is essential to improve glycaemic control et reduce risk of diabetes complications. Key recommendations for people with diabetes are largely similar to those for the general population. Overweight or obese diabetic persons should be supported with evidence-based treatments to achieve and maintain weight loss. A wide range of carbohydrate intakes are acceptable and diets with a low glycaemic index or low glycaemic load may be recommended, provided their composition is consistent with overall diet recommendations for dietary fibers, sugars, saturated fats and proteins. It is also important to consume minimally processed plant foods, such as whole grains, vegetables, whole fruits, legumes, while reducing the consumption of red and processed meats, sodium and sugar-sweetened beverages.


La prise en charge nutritionnelle du diabète de type 2 est essentielle afin d'améliorer l'équilibre glycémique et réduire le risque de complications liées au diabète. Les principales recommandations diététiques pour les personnes diabétiques sont largement comparables à celles prodiguées dans la population générale. Les sujets diabétiques en surpoids ou obèses devraient bénéficier de prises en charge validées pour obtenir et maintenir une perte de poids. Un apport en glucides très variable est autorisé, avec des aliments à charge glycémique faible, et une composition adéquate en fibres, sucres, acides gras saturés et protéines. Il est important de réduire la consommation d'aliments transformés et de favoriser les céréales complètes, les produits végétaux (fruits et légumes), tout en limitant l'apport en viandes, sel et boissons sucrées.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/terapia , Verduras , Alimentos Procesados , Frutas , Carne
4.
Peptides ; 168: 171076, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37572792

RESUMEN

Neprilysin is a peptidase that cleaves glucoregulatory peptides, including glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). Some studies suggest that its inhibition in diabetes and/or obesity improves glycemia, and that this is associated with enhanced insulin secretion, glucose tolerance and insulin sensitivity. Whether reduced neprilysin activity also improves hepatic glucose metabolism has not been explored. We sought to determine whether genetic deletion of neprilysin suppresses hepatic glucose production (HGP) in high fat-fed mice. Nep+/+ and Nep-/- mice were fed high fat diet for 16 weeks, and then underwent a pyruvate tolerance test (PTT) to assess hepatic gluconeogenesis. Since glycogen breakdown in liver can also yield glucose, we assessed liver glycogen content in fasted and fed mice. In Nep-/- mice, glucose excursion during the PTT was reduced when compared to Nep+/+ mice. Further, liver glycogen levels were significantly greater in fasted but not fed Nep-/- versus Nep+/+ mice. Since gut-derived factors modulate HGP, we tested whether gut-selective inhibition of neprilysin could recapitulate the suppression of hepatic gluconeogenesis observed with whole-body inhibition, and this was indeed the case. Finally, the gut-derived neprilysin substrates, GLP-1 and CCK, are well-known to suppress HGP. Having previously demonstrated elevated plasma GLP-1 levels in Nep-/- mice, we now measured plasma CCK bioactivity and reveal an increase in Nep-/- versus Nep+/+ mice, suggesting GLP-1 and/or CCK may play a role in reducing HGP under conditions of neprilysin deficiency. In sum, neprilysin modulates hepatic gluconeogenesis and strategies to inhibit its activity may reduce HGP in type 2 diabetes and obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Gluconeogénesis , Ratones , Animales , Gluconeogénesis/genética , Neprilisina , Diabetes Mellitus Tipo 2/metabolismo , Glucógeno Hepático/metabolismo , Glucosa/metabolismo , Hígado/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Obesidad/metabolismo , Insulina/metabolismo , Glucemia/metabolismo
5.
Endocrinology ; 164(5)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36964914

RESUMEN

The peptidase neprilysin modulates glucose homeostasis by cleaving and inactivating insulinotropic peptides, including some produced in the intestine such as glucagon-like peptide-1 (GLP-1). Under diabetic conditions, systemic or islet-selective inhibition of neprilysin enhances beta-cell function through GLP-1 receptor (GLP-1R) signaling. While neprilysin is expressed in intestine, its local contribution to modulation of beta-cell function remains unknown. We sought to determine whether acute selective pharmacological inhibition of intestinal neprilysin enhanced glucose-stimulated insulin secretion under physiological conditions, and whether this effect was mediated through GLP-1R. Lean chow-fed Glp1r+/+ and Glp1r-/- mice received a single oral low dose of the neprilysin inhibitor thiorphan or vehicle. To confirm selective intestinal neprilysin inhibition, neprilysin activity in plasma and intestine (ileum and colon) was assessed 40 minutes after thiorphan or vehicle administration. In a separate cohort of mice, an oral glucose tolerance test was performed 30 minutes after thiorphan or vehicle administration to assess glucose-stimulated insulin secretion. Systemic active GLP-1 levels were measured in plasma collected 10 minutes after glucose administration. In both Glp1r+/+ and Glp1r-/- mice, thiorphan inhibited neprilysin activity in ileum and colon without altering plasma neprilysin activity or active GLP-1 levels. Further, thiorphan significantly increased insulin secretion in Glp1r+/+ mice, whereas it did not change insulin secretion in Glp1r-/- mice. In conclusion, under physiological conditions, acute pharmacological inhibition of intestinal neprilysin increases glucose-stimulated insulin secretion in a GLP-1R-dependent manner. Since intestinal neprilysin modulates beta-cell function, strategies to inhibit its activity specifically in the intestine may improve beta-cell dysfunction in type 2 diabetes.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Secreción de Insulina , Neprilisina , Animales , Masculino , Ratones , Diabetes Mellitus Tipo 2 , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Insulina/metabolismo , Intestinos , Ratones Endogámicos C57BL , Neprilisina/genética , Neprilisina/metabolismo , Tiorfan/farmacología
6.
Diabetologia ; 65(10): 1687-1700, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35871651

RESUMEN

AIMS/HYPOTHESIS: The islet vasculature, including its constituent islet endothelial cells, is a key contributor to the microenvironment necessary for normal beta cell health and function. In type 2 diabetes, islet amyloid polypeptide (IAPP) aggregates, forming amyloid deposits that accumulate between beta cells and islet capillaries. This process is known to be toxic to beta cells but its impact on the islet vasculature has not previously been studied. Here, we report the first characterisation of the effects of IAPP aggregation on islet endothelial cells/capillaries using cell-based and animal models. METHODS: Primary and immortalised islet endothelial cells were treated with amyloidogenic human IAPP (hIAPP) alone or in the presence of the amyloid blocker Congo Red or the Toll-like receptor (TLR) 2/4 antagonist OxPAPc. Cell viability was determined0 along with mRNA and protein levels of inflammatory markers. Islet capillary abundance, morphology and pericyte coverage were determined in pancreases from transgenic mice with beta cell expression of hIAPP using conventional and confocal microscopy. RESULTS: Aggregated hIAPP decreased endothelial cell viability in immortalised and primary islet endothelial cells (by 78% and 60%, respectively) and significantly increased expression of inflammatory markers Il6, Vcam1 and Edn1 mRNA relative to vehicle treatment in both cell types (p<0.05; n=4). Both cytotoxicity and the proinflammatory response were ameliorated by Congo Red (p<0.05; n=4); whereas TLR2/4-inhibition blocked inflammatory gene expression (p<0.05; n=6) without improving viability. Islets from high-fat-diet-fed amyloid-laden hIAPP transgenic mice also exhibited significantly increased expression of most markers of endothelial inflammation (p<0.05; n=5) along with decreased capillary density compared with non-transgenic littermates fed the same diet (p<0.01). Moreover, a 16% increase in capillary diameter was observed in amyloid-adjacent capillaries (p<0.01), accompanied by a doubling in pericyte structures positive for neuron-glial antigen 2 (p<0.001). CONCLUSIONS/INTERPRETATION: Islet endothelial cells are susceptible to hIAPP-induced cytotoxicity and exhibit a TLR2/4-dependent proinflammatory response to aggregated hIAPP. Additionally, we observed amyloid-selective effects that decreased islet capillary density, accompanied by increased capillary diameter and increased pericyte number. Together, these data demonstrate that the islet vasculature is a target of the cytotoxic and proinflammatory effects of aggregated hIAPP that likely contribute to the detrimental effects of hIAPP aggregation on beta cell function and survival in type 2 diabetes.


Asunto(s)
Amiloidosis , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Amiloide/metabolismo , Amiloidosis/metabolismo , Animales , Rojo Congo/metabolismo , Rojo Congo/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliales/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Interleucina-6/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos , ARN Mensajero/metabolismo , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 888867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733766

RESUMEN

Treatment of heart failure with the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan improved glycemic control in individuals with type 2 diabetes. The relative contribution of neprilysin inhibition versus angiotensin II receptor antagonism to this glycemic benefit remains unknown. Thus, we sought to determine the relative effects of the neprilysin inhibitor sacubitril versus the angiotensin II receptor blocker valsartan on beta-cell function and glucose homeostasis in a mouse model of reduced first-phase insulin secretion, and whether any beneficial effects are additive/synergistic when combined in sacubitril/valsartan. High fat-fed C57BL/6J mice treated with low-dose streptozotocin (or vehicle) were followed for eight weeks on high fat diet alone or supplemented with sacubitril, valsartan or sacubitril/valsartan. Body weight and fed glucose levels were assessed weekly. At the end of the treatment period, insulin release in response to intravenous glucose, insulin sensitivity, and beta-cell mass were determined. Sacubitril and valsartan, but not sacubitril/valsartan, lowered fasting and fed glucose levels and increased insulin release in diabetic mice. None of the drugs altered insulin sensitivity or beta-cell mass, but all reduced body weight gain. Effects of the drugs on insulin release were reproduced in angiotensin II-treated islets from lean C57BL/6J mice, suggesting the insulin response to each of the drugs is due to a direct effect on islets and mechanisms therein. In summary, sacubitril and valsartan each exert beneficial insulinotropic, glycemic and weight-reducing effects in obese and/or diabetic mice when administered alone; however, when combined, mechanisms within the islet contribute to their inability to enhance insulin release.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Neprilisina , Aminobutiratos/farmacología , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Compuestos de Bifenilo , Peso Corporal , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Glucosa , Ratones , Ratones Endogámicos C57BL , Neprilisina/farmacología , Receptores de Angiotensina , Tetrazoles/farmacología , Valsartán/farmacología
8.
Am J Physiol Endocrinol Metab ; 322(3): E307-E318, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35128957

RESUMEN

Type 2 diabetes is associated with the upregulation of neprilysin, a peptidase capable of cleaving glucoregulatory peptides such as glucagon-like peptide-1 (GLP-1). In humans, use of the neprilysin inhibitor sacubitril in combination with an angiotensin II receptor blocker was associated with increased plasma GLP-1 levels and improved glycemic control. Whether neprilysin inhibition per se is mediating these effects remains unknown. We sought to determine whether pharmacological neprilysin inhibition on its own confers beneficial effects on glycemic status and ß-cell function in a mouse model of reduced insulin secretion, and whether any such effects are dependent on GLP-1 receptor (GLP-1R) signaling. High-fat-fed male wild-type (Glp1r+/+) and GLP-1R knockout (Glp1r-/-) mice were treated with low-dose streptozotocin (STZ) to recapitulate type 2 diabetes-associated ß-cell dysfunction, or vehicle as control. Mice were continued on high-fat diet alone or supplemented with the neprilysin inhibitor sacubitril for 8 wk. At the end of the study period, ß-cell function was assessed by oral or intravenous glucose-tolerance test. Fasting and fed glucose were significantly lower in wild-type mice treated with sacubitril, although active GLP-1 levels and insulin secretion during oral glucose challenge were unchanged. In contrast, insulin secretion in response to intravenous glucose was significantly enhanced in sacubitril-treated wild-type mice, and this effect was blunted in Glp1r-/- mice. Similarly, sacubitril enhanced insulin secretion in vitro in islets from STZ-treated Glp1r+/+ but not Glp1r-/- mice. Together, our data suggest the insulinotropic effects of pharmacological neprilysin inhibition in a mouse model of ß-cell dysfunction are mediated via intra-islet GLP-1R signaling.NEW & NOTEWORTHY The neprilysin inhibitor, sacubitril, improves glycemic status in a mouse model of reduced insulin secretion. Sacubitril enhances intravenous but not oral glucose-mediated insulin secretion. The increased glucose-mediated insulin secretion is GLP-1 receptor-dependent. Neprilysin inhibition does not raise postprandial circulating active GLP-1 levels.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Secreción de Insulina , Neprilisina , Aminobutiratos , Animales , Compuestos de Bifenilo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucosa , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neprilisina/antagonistas & inhibidores , Neprilisina/metabolismo
9.
Nutrients ; 13(10)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34684461

RESUMEN

(1) Background: Obesity and type 2 diabetes have been suspected to impact both intrinsic metabolism and function of circulating immune cells. (2) Methods: To further investigate this immunometabolic modulation, we profiled the phospholipidome of the peripheral blood mononuclear cells (PBMCs) in lean, normoglycemic obese (OBNG) and obese with dysglycemia (OBDysG) individuals. (3) Results: The global PBMCs phospholipidome is significantly downmodulated in OBDysG unlike OBNG patients when compared to lean ones. Multiple linear regression analyses show a strong negative relationship between the global PBMCs phospholipidome and parameters assessing insulin resistance. Even though all classes of phospholipid are affected, the relative abundance of each class is maintained with the exception of Lyso-PC/PC and Lyso-PE/PE ratios that are downmodulated in PBMCs of OBDysG compared to OBNG individuals. Interestingly, the percentage of saturated PC is positively associated with glycated hemoglobin (HbA1c). Moreover, a few lipid species are significantly downmodulated in PBMCs of OBDysG compared to OBNG individuals, making possible to distinguish the two phenotypes. (4) Conclusions: This lipidomic study highlights for the first-time modulations of the PBMCs phospholipidome in obese patients with prediabetes and type 2 diabetes. Such phospholipidome remodeling could disrupt the cell membranes and the lipid mediator's levels, driving an immune cell dysfunction.


Asunto(s)
Glucemia , Resistencia a la Insulina , Leucocitos Mononucleares/metabolismo , Lipidómica , Obesidad/metabolismo , Fosfolípidos/metabolismo , Adulto , Biomarcadores , Pesos y Medidas Corporales , Biología Computacional , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Hemoglobina Glucada/metabolismo , Humanos , Lipidómica/métodos , Masculino , Espectrometría de Masas , Lípidos de la Membrana , Persona de Mediana Edad , Obesidad/sangre , Obesidad/etiología , Adulto Joven
10.
J Endocr Soc ; 5(9): bvab084, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34337276

RESUMEN

CONTEXT: Inhibitors of the protease neprilysin (NEP) are used for treating heart failure, but are also linked to improvements in metabolism. NEP may cleave proglucagon-derived peptides, including the glucose and amino acid (AA)-regulating hormone glucagon. Studies investigating NEP inhibition on glucagon metabolism are warranted. OBJECTIVE: This work aims to investigate whether NEP inhibition increases glucagon levels. METHODS: Plasma concentrations of glucagon and AAs were measured in eight healthy men during a mixed meal with and without a single dose of the NEP inhibitor/angiotensin II type 1 receptor antagonist, sacubitril/valsartan (194 mg/206 mg). Long-term effects of sacubitril/valsartan (8 weeks) were investigated in individuals with obesity (n = 7). Mass spectrometry was used to investigate NEP-induced glucagon degradation, and the derived glucagon fragments were tested pharmacologically in cells transfected with the glucagon receptor (GCGR). Genetic deletion or pharmacological inhibition of NEP with or without concomitant GCGR antagonism was tested in mice to evaluate effects on AA metabolism. RESULTS: In healthy men, a single dose of sacubitril/valsartan significantly increased postprandial concentrations of glucagon by 228%, concomitantly lowering concentrations of AAs including glucagonotropic AAs. Eight-week sacubitril/valsartan treatment increased fasting glucagon concentrations in individuals with obesity. NEP cleaved glucagon into 5 inactive fragments (in vitro). Pharmacological NEP inhibition protected both exogenous and endogenous glucagon in mice after an AA challenge, while NEP-deficient mice showed elevated fasting and AA-stimulated plasma concentrations of glucagon and urea compared to controls. CONCLUSION: NEP cleaves glucagon, and inhibitors of NEP result in hyperglucagonemia and may increase postprandial AA catabolism without affecting glycemia.

11.
J Endocrinol ; 251(2): 125-135, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34382577

RESUMEN

Apoptosis repressor with caspase recruitment domain (ARC) is an endogenous inhibitor of cell death signaling that is expressed in insulin-producing ß cells. ARC has been shown to reduce ß-cell death in response to diabetogenic stimuli in vitro, but its role in maintaining glucose homeostasis in vivo has not been fully established. Here we examined whether loss of ARC in FVB background mice exacerbates high fat diet (HFD)-induced hyperglycemia in vivo over 24 weeks. Prior to commencing 24-week HFD, ARC-/- mice had lower body weight than wild type (WT) mice. This body weight difference was maintained until the end of the study and was associated with decreased epididymal and inguinal adipose tissue mass in ARC-/- mice. Non-fasting plasma glucose was not different between ARC-/- and WT mice prior to HFD feeding, and ARC-/- mice displayed a greater increase in plasma glucose over the first 4 weeks of HFD. Plasma glucose remained elevated in ARC-/- mice after 16 weeks of HFD feeding, at which time it had returned to baseline in WT mice. Following 24 weeks of HFD, non-fasting plasma glucose in ARC-/- mice returned to baseline and was not different from WT mice. At this final time point, no differences were observed between genotypes in plasma glucose or insulin under fasted conditions or following intravenous glucose administration. However, HFD-fed ARC-/- mice exhibited significantly decreased ß-cell area compared to WT mice. Thus, ARC deficiency delays, but does not prevent, metabolic adaptation to HFD feeding in mice, worsening transient HFD-induced hyperglycemia.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Dieta Alta en Grasa/efectos adversos , Hiperglucemia/etiología , Células Secretoras de Insulina/fisiología , Proteínas Musculares/fisiología , Animales , Glucemia , Secreción de Insulina , Ratones
12.
Rev Med Suisse ; 17(747): 1418-1422, 2021 Aug 25.
Artículo en Francés | MEDLINE | ID: mdl-34431635

RESUMEN

Sacubitril/valsartan, a first-in-class angiotensin receptor-neprilysin inhibitor (ARNI), is indicated for the treatment of heart failure with reduced ejection fraction. It has demonstrated benefits in terms of cardiovascular morbidity and mortality reduction in this population. Recently, this drug association has also been shown to improve glycemic control and insulin sensitivity in patients with obesity and/or type 2 diabetes. Furthermore, some studies suggest a protective role of this new drug class in diabetic nephropathy. Altogether, these data raise the question about the potential place of ARNI in prevention and treatment of type 2 diabetes, a condition closely associated with heart failure.


Le sacubitril/valsartan, premier médicament de la classe des ARNI (Angiotensin Receptor-Neprilysin Inhibitor), est indiqué dans le traitement de l'insuffisance cardiaque à fraction d'éjection réduite. Il a démontré des bénéfices en termes de réduction de morbimortalité cardiovasculaire dans cette population. Récemment, il a également été rapporté que cette association thérapeutique améliore le contrôle glycémique et la sensibilité à l'insuline des patients avec une obésité et/ou un diabète de type 2. De plus, certaines études suggèrent également un rôle protecteur de cette nouvelle classe médicamenteuse dans la néphropathie diabétique. Ces données soulèvent la question de la place éventuelle des ARNI dans la prévention et le traitement du diabète de type 2, une pathologie étroitement associée à l'insuffisance cardiaque.


Asunto(s)
Diabetes Mellitus Tipo 2 , Aminobutiratos , Antagonistas de Receptores de Angiotensina/uso terapéutico , Compuestos de Bifenilo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Combinación de Medicamentos , Humanos , Neprilisina , Valsartán
14.
Endocr Rev ; 42(5): 528-583, 2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34180979

RESUMEN

The pathogenesis of hyperglycemia observed in most forms of diabetes is intimately tied to the islet ß cell. Impairments in propeptide processing and secretory function, along with the loss of these vital cells, is demonstrable not only in those in whom the diagnosis is established but typically also in individuals who are at increased risk of developing the disease. Biomarkers are used to inform on the state of a biological process, pathological condition, or response to an intervention and are increasingly being used for predicting, diagnosing, and prognosticating disease. They are also proving to be of use in the different forms of diabetes in both research and clinical settings. This review focuses on the ß cell, addressing the potential utility of genetic markers, circulating molecules, immune cell phenotyping, and imaging approaches as biomarkers of cellular function and loss of this critical cell. Further, we consider how these biomarkers complement the more long-established, dynamic, and often complex measurements of ß-cell secretory function that themselves could be considered biomarkers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Amiloide/química , Amiloide/genética , Biomarcadores , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos , Islotes Pancreáticos/patología , Islotes Pancreáticos/fisiología
15.
J Endocrinol ; 248(2): 95-106, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33337344

RESUMEN

Islet endothelial cells produce paracrine factors important for islet beta-cell function and survival. Under conditions of type 2 diabetes, islet endothelial cells exhibit a dysfunctional phenotype including increased expression of genes involved in cellular adhesion and inflammation. We sought to determine whether treatment of hyperglycemia with the sodium glucose co-transporter 2 inhibitor empagliflozin, either alone or in combination with metformin, would improve markers of endothelial cell function in islets, assessed ex vivo, and if such an improvement is associated with improved insulin secretion in a mouse model of diabetes in vivo. For these studies, db/db diabetic mice and non-diabetic littermate controls were treated for 6 weeks with empagliflozin or metformin, either alone or in combination. For each treatment group, expression of genes indicative of islet endothelial dysfunction was quantified. Islet endothelial and beta-cell area was assessed by morphometry of immunochemically stained pancreas sections. Measurements of plasma glucose and insulin secretion during an intravenous glucose tolerance test were performed on vehicle and drug treated diabetic animals. We found that expression of endothelial dysfunction marker genes is markedly increased in diabetic mice. Treatment with either empagliflozin or metformin lowered expression of the dysfunction marker genes ex vivo, which correlated with improved glycemic control, and increased insulin release in vivo. Empagliflozin treatment was more effective than metformin alone, with a combination of the two drugs demonstrating the greatest effects. Improving islet endothelial function through strategies such as empagliflozin/metformin treatment may provide an effective approach for improving insulin release in human type 2 diabetes.


Asunto(s)
Compuestos de Bencidrilo/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Glucósidos/uso terapéutico , Secreción de Insulina/efectos de los fármacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Animales , Compuestos de Bencidrilo/farmacología , Glucemia/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Glucósidos/farmacología , Hipoglucemiantes/uso terapéutico , Islotes Pancreáticos/efectos de los fármacos , Masculino , Metformina/uso terapéutico , Ratones , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
16.
Diabetologia ; 63(10): 2007-2021, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32894311

RESUMEN

Obesity and insulin resistance are associated with the development of type 2 diabetes. It is well accepted that beta cell dysfunction is required for hyperglycaemia to occur. The prevailing view is that, in the presence of insulin resistance, beta cell dysfunction that occurs early in the course of the disease process is the critical abnormality. An alternative model has been proposed in which primary beta cell overstimulation results in insulin hypersecretion that then leads to the development of obesity and insulin resistance, and ultimately to beta cell exhaustion. In this review, data from preclinical and clinical studies, including intervention studies, are discussed in the context of these models. The preponderance of the data supports the view that an early beta cell functional defect is the more likely mechanism underlying the pathogenesis of hyperglycaemia in the majority of individuals who develop type 2 diabetes. Graphical abstract.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Humanos , Obesidad/metabolismo
17.
Diabetologia ; 63(11): 2385-2395, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32728889

RESUMEN

AIMS/HYPOTHESIS: Aggregation of the beta cell secretory product human islet amyloid polypeptide (hIAPP) results in islet amyloid deposition, a pathological feature of type 2 diabetes. Amyloid formation is associated with increased levels of islet IL-1ß as well as beta cell dysfunction and death, but the mechanisms that promote amyloid deposition in situ remain unclear. We hypothesised that physiologically relevant concentrations of IL-1ß stimulate beta cell islet amyloid polypeptide (IAPP) release and promote amyloid formation. METHODS: We used a humanised mouse model of endogenous beta cell hIAPP expression to examine whether low (pg/ml) concentrations of IL-1ß promote islet amyloid formation in vitro. Amyloid-forming islets were cultured for 48 h in the presence or absence of IL-1ß with or without an IL-1ß neutralising antibody. Islet morphology was assessed by immunohistochemistry and islet mRNA expression, hormone content and release were also quantified. Cell-free thioflavin T assays were used to monitor hIAPP aggregation kinetics in the presence and absence of IL-1ß. RESULTS: Treatment with a low concentration of IL-1ß (4 pg/ml) for 48 h increased islet amyloid prevalence (93.52 ± 3.89% vs 43.83 ± 9.67% amyloid-containing islets) and amyloid severity (4.45 ± 0.82% vs 2.16 ± 0.50% amyloid area/islet area) in hIAPP-expressing mouse islets in vitro. This effect of IL-1ß was reduced when hIAPP-expressing islets were co-treated with an IL-1ß neutralising antibody. Cell-free hIAPP aggregation assays showed no effect of IL-1ß on hIAPP aggregation in vitro. Low concentration IL-1ß did not increase markers of the unfolded protein response (Atf4, Ddit3) or alter proIAPP processing enzyme gene expression (Pcsk1, Pcsk2, Cpe) in hIAPP-expressing islets. However, release of IAPP and insulin were increased over 48 h in IL-1ß-treated vs control islets (IAPP 0.409 ± 0.082 vs 0.165 ± 0.051 pmol/5 islets; insulin 87.5 ± 8.81 vs 48.3 ± 17.3 pmol/5 islets), and this effect was blocked by co-treatment with IL-1ß neutralising antibody. CONCLUSIONS/INTERPRETATION: Under amyloidogenic conditions, physiologically relevant levels of IL-1ß promote islet amyloid formation by increasing beta cell release of IAPP. Neutralisation of this effect of IL-1ß may decrease the deleterious effects of islet amyloid formation on beta cell function and survival.


Asunto(s)
Interleucina-1beta/farmacología , Amiloidosis/tratamiento farmacológico , Animales , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Ratones
18.
Br J Cardiol ; 27(4): 109-111, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33795925
19.
Protein Eng Des Sel ; 32(2): 95-102, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31769491

RESUMEN

Islet amyloid is a pathologic feature of type 2 diabetes (T2D) that is associated with ß-cell loss and dysfunction. These amyloid deposits form via aggregation of the ß-cell secretory product islet amyloid polypeptide (IAPP) and contain other molecules including the heparan sulfate proteoglycan perlecan. Perlecan has been shown to bind amyloidogenic human IAPP (hIAPP) via its heparan sulfate glycosaminoglycan (HS GAG) chains and to enhance hIAPP aggregation in vitro. We postulated that reducing the HS GAG content of perlecan would also decrease islet amyloid deposition in vivo. hIAPP transgenic mice were crossed with Hspg2Δ3/Δ3 mice harboring a perlecan mutation that prevents HS GAG attachment (hIAPP;Hspg2Δ3/Δ3), and male offspring from this cross were fed a high fat diet for 12 months to induce islet amyloid deposition. At the end of the study body weight, islet amyloid area, ß-cell area, glucose tolerance and insulin secretion were analyzed. hIAPP;Hspg2Δ3/Δ3 mice exhibited significantly less islet amyloid deposition and greater ß-cell area compared to hIAPP mice expressing wild type perlecan. hIAPP;Hspg2Δ3/Δ3 mice also gained significantly less weight than other genotypes. When adjusted for differences in body weight using multiple linear regression modeling, we found no differences in islet amyloid deposition or ß-cell area between hIAPP transgenic and hIAPP;Hspg2Δ3/Δ3 mice. We conclude that loss of perlecan exon 3 reduces islet amyloid deposition in vivo through indirect effects on body weight and possibly also through direct effects on hIAPP aggregation. Both of these mechanisms may promote maintenance of glucose homeostasis in the setting of T2D.


Asunto(s)
Peso Corporal , Proteoglicanos de Heparán Sulfato/deficiencia , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/genética , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Animales , Recuento de Células , Humanos , Ratones , Ratones Transgénicos
20.
Protein Eng Des Sel ; 32(2): 67-76, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31504890

RESUMEN

Aggregation of islet amyloid polypeptide (IAPP) into islet amyloid results in ß-cell toxicity in human type 2 diabetes. To determine the effect of islet amyloid formation on gene expression, we performed ribonucleic acid (RNA) sequencing (RNA-seq) analysis using cultured islets from either wild-type mice (mIAPP), which are not amyloid prone, or mice that express human IAPP (hIAPP), which develop amyloid. Comparing mIAPP and hIAPP islets, 5025 genes were differentially regulated (2439 upregulated and 2586 downregulated). When considering gene sets (reactomes), 248 and 52 pathways were up- and downregulated, respectively. Of the top 100 genes upregulated under two conditions of amyloid formation, seven were common. Of these seven genes, only steroidogenic acute regulatory protein (Star) demonstrated no effect of glucose per se to modify its expression. We confirmed this differential gene expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and also demonstrated the presence of STAR protein in islets containing amyloid. Furthermore, Star is a part of reactomes representing metabolism, metabolism of lipids, metabolism of steroid hormones, metabolism of steroids and pregnenolone biosynthesis. Thus, examining gene expression that is differentially regulated by islet amyloid has the ability to identify new molecules involved in islet physiology and pathology applicable to type 2 diabetes.


Asunto(s)
Amiloide/biosíntesis , Islotes Pancreáticos/metabolismo , Fosfoproteínas/genética , RNA-Seq , Regulación hacia Arriba , Animales , Relación Dosis-Respuesta a Droga , Glucosa/farmacología , Humanos , Islotes Pancreáticos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...