Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Intervalo de año de publicación
1.
EMBO Mol Med ; 16(3): 475-505, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360999

RESUMEN

We find that NUPR1, a stress-associated intrinsically disordered protein, induced droplet formation via liquid-liquid phase separation (LLPS). NUPR1-driven LLPS was crucial for the creation of NUPR1-dependent stress granules (SGs) in pancreatic cancer cells since genetic or pharmacological inhibition by ZZW-115 of NUPR1 activity impeded SGs formation. The KrasG12D mutation induced oncogenic stress, NUPR1 overexpression, and promoted SGs development. Notably, enforced NUPR1 expression induced SGs formation independently of mutated KrasG12D. Mechanistically, KrasG12D expression strengthened sensitivity to NUPR1 inactivation, inducing cell death, activating caspase 3 and releasing LDH. Remarkably, ZZW-115-mediated SG-formation inhibition hampered the development of pancreatic intraepithelial neoplasia (PanINs) in Pdx1-cre;LSL-KrasG12D (KC) mice. ZZW-115-treatment of KC mice triggered caspase 3 activation, DNA fragmentation, and formation of the apoptotic bodies, leading to cell death, specifically in KrasG12D-expressing cells. We further demonstrated that, in developed PanINs, short-term ZZW-115 treatment prevented NUPR1-associated SGs presence. Lastly, a four-week ZZW-115 treatment significantly reduced the number and size of PanINs in KC mice. This study proposes that targeting NUPR1-dependent SGs formation could be a therapeutic approach to induce cell death in KrasG12D-dependent tumors.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Piperazinas , Tiazinas , Animales , Ratones , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Carcinoma Ductal Pancreático/genética , Caspasa 3/genética , Caspasa 3/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Gránulos de Estrés , Mutaciones Letales Sintéticas
2.
Molecules ; 28(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298790

RESUMEN

One of the most important constituents of the cell membrane is arachidonic acid. Lipids forming part of the cellular membrane can be metabolized in a variety of cellular types of the body by a family of enzymes termed phospholipases: phospholipase A2, phospholipase C and phospholipase D. Phospholipase A2 is considered the most important enzyme type for the release of arachidonic acid. The latter is subsequently subjected to metabolization via different enzymes. Three enzymatic pathways, involving the enzymes cyclooxygenase, lipoxygenase and cytochrome P450, transform the lipid derivative into several bioactive compounds. Arachidonic acid itself plays a role as an intracellular signaling molecule. Additionally, its derivatives play critical roles in cell physiology and, moreover, are involved in the development of disease. Its metabolites comprise, predominantly, prostaglandins, thromboxanes, leukotrienes and hydroxyeicosatetraenoic acids. Their involvement in cellular responses leading to inflammation and/or cancer development is subject to intense study. This manuscript reviews the findings on the involvement of the membrane lipid derivative arachidonic acid and its metabolites in the development of pancreatitis, diabetes and/or pancreatic cancer.


Asunto(s)
Leucotrienos , Lípidos de la Membrana , Ácido Araquidónico/metabolismo , Prostaglandinas/metabolismo , Fosfolipasas A2
3.
J. physiol. biochem ; 79(1): 235–249, feb. 2023. graf
Artículo en Inglés | IBECS | ID: ibc-215728

RESUMEN

We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells. In the presence of melatonin (1 mM, 100 µM, 10 µM, or 1 µM), decreases in the phosphorylation of c-Jun N-terminal kinase and of p44/42 and an increase in the phosphorylation of p38 were observed. Cell viability dropped in the presence of melatonin. A rise in the phosphorylation of AMP-activated protein kinase was detected in the presence of 1 mM and 100 µM melatonin. Treatment with 1 mM melatonin decreased the phosphorylation of protein kinase B, whereas 100 µM and 10 µM melatonin increased its phosphorylation. An increase in the generation of mitochondrial reactive oxygen species and a decrease of mitochondrial membrane potential were noted following melatonin treatment. Basal and maximal respiration, ATP production by oxidative phosphorylation, spare capacity, and proton leak dropped in the presence of melatonin. The expression of complex I of the mitochondrial respiratory chain was augmented in the presence of melatonin. Conversely, in the presence of 1 mM melatonin, decreases in the expression of mitofusins 1 and 2 were detected. The glycolysis and the glycolytic capacity were diminished in cells treated with 1 mM or 100 µM melatonin. Increases in the expression of phosphofructokinase-1 and lactate dehydrogenase were noted in cells incubated with 100 µM, 10 µM, or 1 µM melatonin. The expression of glucose transporter 1 was increased in cells incubated with 10 µM or 1 µM melatonin. Conversely, 1 mM melatonin decreased the expression of all three proteins. Our results suggest that melatonin, at pharmacological concentrations, might modulate mitochondrial physiology and energy metabolism in addition to major pathways involved in pancreatic stellate cell proliferation. (AU)


Asunto(s)
Humanos , Melatonina/farmacología , Células Estrelladas Pancreáticas , Mitocondrias/metabolismo , Fosforilación Oxidativa , Proliferación Celular
4.
J Physiol Biochem ; 79(1): 235-249, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36334253

RESUMEN

We have investigated the effects of melatonin on major pathways related with cellular proliferation and energetic metabolism in pancreatic stellate cells. In the presence of melatonin (1 mM, 100 µM, 10 µM, or 1 µM), decreases in the phosphorylation of c-Jun N-terminal kinase and of p44/42 and an increase in the phosphorylation of p38 were observed. Cell viability dropped in the presence of melatonin. A rise in the phosphorylation of AMP-activated protein kinase was detected in the presence of 1 mM and 100 µM melatonin. Treatment with 1 mM melatonin decreased the phosphorylation of protein kinase B, whereas 100 µM and 10 µM melatonin increased its phosphorylation. An increase in the generation of mitochondrial reactive oxygen species and a decrease of mitochondrial membrane potential were noted following melatonin treatment. Basal and maximal respiration, ATP production by oxidative phosphorylation, spare capacity, and proton leak dropped in the presence of melatonin. The expression of complex I of the mitochondrial respiratory chain was augmented in the presence of melatonin. Conversely, in the presence of 1 mM melatonin, decreases in the expression of mitofusins 1 and 2 were detected. The glycolysis and the glycolytic capacity were diminished in cells treated with 1 mM or 100 µM melatonin. Increases in the expression of phosphofructokinase-1 and lactate dehydrogenase were noted in cells incubated with 100 µM, 10 µM, or 1 µM melatonin. The expression of glucose transporter 1 was increased in cells incubated with 10 µM or 1 µM melatonin. Conversely, 1 mM melatonin decreased the expression of all three proteins. Our results suggest that melatonin, at pharmacological concentrations, might modulate mitochondrial physiology and energy metabolism in addition to major pathways involved in pancreatic stellate cell proliferation.


Asunto(s)
Melatonina , Melatonina/farmacología , Células Estrelladas Pancreáticas , Mitocondrias/metabolismo , Fosforilación Oxidativa , Proliferación Celular
5.
Biochem Pharmacol ; 202: 115118, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671789

RESUMEN

Pancreatic stellate cells (PSCs), the main cell type responsible for the development of fibrosis in pancreatic cancer, proliferate actively under hypoxia. Melatonin has received attention as a potential antifibrotic agent due to its anti-proliferative actions on PSCs. In this work, we investigated the activation of the PI3K/Akt/mTOR pathway and the metabolic adaptations that PSCs undergo under hypoxic conditions, as well as the probable modulation by melatonin. Incubation of cells under hypoxia induced an increase in cell proliferation, and in the expression of alpha-smooth muscle actin and of collagen type 1. In addition, an increase in the phosphorylation of Akt was observed, whereas a decrease in the phosphorylation of PTEN and GSK-3b was noted. The phosphorylation of mTOR and its substrate p70 S6K was decreased under hypoxia. Treatment of PSCs with melatonin under hypoxia diminished cell proliferation, the levels of alpha-smooth muscle actin and of collagen type 1, the phosphorylation of Akt and increased phosphorylation of mTOR. Mitochondrial activity decreased in PSCs under hypoxia. A glycolytic shift was observed. Melatonin further decreased mitochondrial activity. Under hypoxia, no increase in autophagic flux was noted. However, melatonin treatment induced autophagy activation. Nevertheless, inhibition of this process did not induce detectable changes in the viability of cells treated with melatonin. We conclude that PSCs undergo metabolic adaptation under hypoxia that might help them survive and that pharmacological concentrations of melatonin modulate cell responses to hypoxia. Our results contribute to the knowledge of the mechanisms by which melatonin could modulate fibrosis within the pancreas.


Asunto(s)
Melatonina , Células Estrelladas Pancreáticas , Actinas/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fibrosis , Humanos , Hipoxia/metabolismo , Melatonina/metabolismo , Melatonina/farmacología , Páncreas/metabolismo , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
6.
World J Gastroenterol ; 27(28): 4582-4602, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34366624

RESUMEN

In solid tumors, the development of vasculature is, to some extent, slower than the proliferation of the different types of cells that form the tissue, both cancer and stroma cells. As a consequence, the oxygen availability is compromised and the tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable depending on where the cells are localized, being less extreme at the periphery of the tumor and more severe in areas located deep within the tumor mass. Surprisingly, the cells do not die. Intracellular pathways that are critical for cell fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are all involved in cellular responses to the low oxygen availability and are orchestrated by hypoxia-inducible factor. Oxidative stress and inflammation are critical conditions that develop under hypoxia. Together with changes in cellular bioenergetics, all contribute to cell survival. Moreover, cell-to-cell interaction is established within the tumor such that cancer cells and the microenvironment maintain a bidirectional communication. Additionally, the release of extracellular vesicles, or exosomes, represents short and long loops that can convey important information regarding invasion and metastasis. As a result, the tumor grows and its malignancy increases. Currently, one of the most lethal tumors is pancreatic cancer. This paper reviews the most recent advances in the knowledge of how cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the physiological processes that help the tumor increase its size and their regulation will be of major relevance for the treatment of this deadly tumor.


Asunto(s)
Neoplasias Pancreáticas , Autofagia , Hipoxia de la Célula , Línea Celular Tumoral , Supervivencia Celular , Humanos , Hipoxia , Microambiente Tumoral
7.
Int J Mol Sci ; 22(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34074034

RESUMEN

In certain diseases of the pancreas, pancreatic stellate cells form an important part of fibrosis and are critical for the development of cancer cells. A hypoxic condition develops within the tumor, to which pancreatic stellate cells adapt and are able to proliferate. The consequence is the growth of the tumor. Melatonin, the product of the pineal gland, is gaining attention as an agent with therapeutic potential against pancreatic cancers. Its actions on tumor cells lead, in general, to a reduction in cell viability and proliferation. However, its effects on pancreatic stellate cells subjected to hypoxia are less known. In this study, we evaluated the actions of pharmacological concentrations of melatonin (1 mM-1 µM) on pancreatic stellate cells subjected to hypoxia. The results show that melatonin induced a decrease in cell viability at the highest concentrations tested. Similarly, the incorporation of BrdU into DNA was diminished by melatonin. The expression of cyclins A and D also was decreased in the presence of melatonin. Upon treatment of cells with melatonin, increases in the expression of major markers of ER stress, namely BIP, phospho-eIF2α and ATF-4, were detected. Modulation of apoptosis was noticed as an increase in caspase-3 activation. In addition, changes in the phosphorylated state of p44/42, p38 and JNK MAPKs were detected in cells treated with melatonin. A slight decrease in the content of α-smooth muscle actin was detected in cells treated with melatonin. Finally, treatment of cells with melatonin decreased the expression of matrix metalloproteinases 2, 3, 9 and 13. Our observations suggest that melatonin, at pharmacological concentrations, diminishes the proliferation of pancreatic stellate cells subjected to hypoxia through modulation of cell cycle, apoptosis and the activation of crucial MAPKs. Cellular responses might involve certain ER stress regulator proteins. In view of the results, melatonin could be taken into consideration as a potential therapeutic agent for pancreatic fibrosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina A/metabolismo , Ciclina D/metabolismo , Melatonina/farmacología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/metabolismo , Actinas/metabolismo , Factor de Transcripción Activador 4/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Caspasa 3/metabolismo , Hipoxia de la Célula , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas de Choque Térmico/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Metaloproteinasas de la Matriz/metabolismo , Ratas , Ratas Wistar , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Antioxidants (Basel) ; 10(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33918063

RESUMEN

Pancreatic stellate cells (PSC) play a major role in the formation of fibrotic tissue in pancreatic tumors. On its side, melatonin is a putative therapeutic agent for pancreatic cancer and inflammation. In this work, the actions of melatonin on PSC subjected to hypoxia were evaluated. Reactive oxygen species (ROS) generation reduced (GSH) and oxidized (GSSG) levels of glutathione, and protein and lipid oxidation were analyzed. The phosphorylation of nuclear factor erythroid 2-related factor (Nrf2), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and the regulatory protein nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha (IκBα) was studied. The expression of Nrf2-regulated antioxidant enzymes, superoxide dismutase (SOD) enzymes, cyclooxygenase 2 (COX-2), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were also studied. Total antioxidant capacity (TAC) was assayed. Finally, cell viability was studied. Under hypoxia and in the presence of melatonin generation of ROS was observed. No increases in the oxidation of proteins or lipids were detected. The phosphorylation of Nrf2 and the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1, heme oxygenase-1, SOD1, and of SOD2 were augmented. The TAC was increased. Protein kinase C was involved in the effects of melatonin. Melatonin decreased the GSH/GSSG ratio at the highest concentration tested. Cell viability dropped in the presence of melatonin. Finally, melatonin diminished the phosphorylation of NF-kB and the expression of COX-2, IL-6, and TNF-α. Our results indicate that melatonin, at pharmacological concentrations, modulates the red-ox state, viability, and the expression of proinflammatory mediators in PSC subjected to hypoxia.

9.
Food Chem Toxicol ; 145: 111594, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32738373

RESUMEN

We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.


Asunto(s)
Ácido 2-Aminoadípico/toxicidad , Células Acinares/efectos de los fármacos , Páncreas/citología , Especies Reactivas de Oxígeno/metabolismo , Tripsina/metabolismo , Animales , Biomarcadores , Señalización del Calcio/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos
10.
Biol Cell ; 112(10): 280-299, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32632968

RESUMEN

BACKGROUND INFORMATION: Pancreatic stellate cells play a key role in the fibrosis that develops in diseases such as pancreatic cancer. In the growing tumour, a hypoxia condition develops under which cancer cells are able to proliferate. The growth of fibrotic tissue contributes to hypoxia. In this study, the effect of hypoxia (1% O2 ) on pancreatic stellate cells physiology was investigated. Changes in intracellular free-Ca2+ concentration, mitochondrial free-Ca2+ concentration and mitochondrial membrane potential were studied by fluorescence techniques. The status of enzymes responsible for the cellular oxidative state was analyzed by quantitative reverse transcription-polymerase chain reaction, high-performance liquid chromatography, spectrophotometric and fluorimetric methods and by Western blotting analysis. Cell viability and proliferation were studied by crystal violet test, 5-bromo-2-deoxyuridine cell proliferation test and Western blotting analysis. Finally, cell migration was studied employing the wound healing assay. RESULTS: Hypoxia induced an increase in intracellular and mitochondrial free-Ca2+ concentration, whereas mitochondrial membrane potential was decreased. An increase in mitochondrial reactive oxygen species production was observed. Additionally, an increase in the oxidation of proteins and lipids was detected. Moreover, cellular total antioxidant capacity was decreased. Increases in the expression of superoxide dismutase 1 and 2 were observed and superoxide dismutase activity was augmented. Hypoxia evoked a decrease in the oxidized/reduced glutathione ratio. An increase in the phosphorylation of nuclear factor erythroid 2-related factor and in expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 were detected. The expression of cyclin A was decreased, whereas expression of cyclin D and the content of 5-bromo-2-deoxyuridine were increased. This was accompanied by an increase in cell viability. The phosphorylation state of c-Jun NH2 -terminal kinase was increased, whereas that of p44/42 and p38 was decreased. Finally, cells subjected to hypoxia maintained migration ability. CONCLUSIONS AND SIGNIFICANCE: Hypoxia creates pro-oxidant conditions in pancreatic stellate cells to which cells adapt and leads to increased viability and proliferation.


Asunto(s)
Hipoxia de la Célula , Estrés Oxidativo , Células Estrelladas Pancreáticas , Animales , Calcio/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Células Estrelladas Pancreáticas/citología , Células Estrelladas Pancreáticas/metabolismo , Ratas , Ratas Wistar
11.
J Appl Toxicol ; 40(11): 1554-1565, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32567733

RESUMEN

In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 µm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 µm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.


Asunto(s)
Antagonistas de Hormonas/toxicidad , Células Estrelladas Pancreáticas/efectos de los fármacos , Receptores de Melatonina/antagonistas & inhibidores , Triptaminas/toxicidad , Animales , Señalización del Calcio/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Masculino , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Fosforilación , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptores de Melatonina/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
12.
J Physiol Biochem ; 76(2): 345-355, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32361979

RESUMEN

In this study, the effects of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC) have been examined. Cell viability and proliferation, caspase-3 activation, and the expression of cyclin A and cyclin D were analyzed. Our results show that melatonin decreased PSC viability in a time- and concentration-dependent manner. This effect was not inhibited by treatment of cells with MT1, MT2, calmodulin, or ROR-alpha inhibitors prior to melatonin addition. Activation of caspase-3 in response to melatonin was detected. The expression of cyclin A and cyclin D was decreased in cells treated with melatonin. Finally, changes in BrdU incorporation into the newly synthesized DNA of proliferating cells were also observed in the presence of melatonin. We conclude that melatonin, at pharmacological concentrations, modulates proliferation of PSC through activation of apoptosis and involving crucial regulators of the cell cycle. These actions might not require specific melatonin receptors. Our observations suggest that melatonin, at high doses, could potentially exert anti-fibrotic effects and, thus, could be taken into consideration as supportive treatment in the therapy of pancreatic diseases.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Melatonina/farmacología , Células Estrelladas Pancreáticas/efectos de los fármacos , Animales , Caspasa 3/metabolismo , Células Cultivadas , Ciclina A/metabolismo , Ciclina D/metabolismo , Células Estrelladas Pancreáticas/citología , Ratas , Ratas Wistar
13.
Sci Rep ; 10(1): 6352, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286500

RESUMEN

In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Melatonina/farmacología , Oxidación-Reducción/efectos de los fármacos , Células Estrelladas Pancreáticas/metabolismo , Animales , Antioxidantes/metabolismo , Catalasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/genética , Disulfuro de Glutatión/genética , Hemo-Oxigenasa 1/genética , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Células Estrelladas Pancreáticas/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/genética
14.
Biochim Biophys Acta Gen Subj ; 1863(11): 129407, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31381958

RESUMEN

BACKGROUND: In this work we studied the effects of the melatonin receptor-antagonist luzindole (1 µM-50 µM) on isolated mouse pancreatic acinar cells. METHODS: Changes in intracellular free-Ca2+ concentration, reactive oxygen species production and trypsin secretion were analyzed. RESULTS: Luzindole induced increases in [Ca2+]i that diminished CCK-8 induced Ca2+ mobilization, compared with that observed when CCK-8 was applied alone. Treatment of cells with thapsigargin (1 µM), in the absence of Ca2+ in the extracellular medium, evoked a transient increase in [Ca2+]i. The additional incubation of cells with luzindole (10 µM) failed to induce further mobilization of Ca2+. In the presence of luzindole a concentration-dependent increase in ROS generation was observed that decreased in the absence of Ca2+ or by pretreatment of cells with melatonin (100 µM). Incubation of pancreatic acinar cells with luzindole (10 µM) impaired CCK-8-induced trypsin secretion. Melatonin was unable to revert the effect of luzindole on CCK-8-induced trypsin secretion. CONCLUSION: The melatonin receptor-inhibitor luzindole induces Ca2+-mediated pro-oxidative conditions and impairment of enzyme secretion, which creates a situation in pancreatic acinar cells that might compromise their function. GENERAL SIGNIFICANCE: The effects of luzindole that we have observed, might be unspecific and could mislead the observations when it is used to study the actions of melatonin on the gland. Another possibility is that melatonin receptors exhibit a basal or agonist-independent activity in pancreatic acinar cells, which might be modulated by melatonin or luzindole.


Asunto(s)
Células Acinares/metabolismo , Señalización del Calcio/efectos de los fármacos , Páncreas Exocrino/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores de Melatonina/antagonistas & inhibidores , Tripsina/metabolismo , Triptaminas/farmacología , Células Acinares/citología , Animales , Calcio/metabolismo , Masculino , Ratones , Páncreas Exocrino/citología , Receptores de Melatonina/metabolismo
15.
J Physiol Biochem ; 75(2): 185-197, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30868511

RESUMEN

In this study, the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on human pancreatic stellate cells (HPSCs) have been examined. Cell type-specific markers and expression of melatonin receptors were analyzed by western blot analysis. Changes in intracellular free Ca2+ concentration were followed by fluorimetric analysis of fura-2-loaded cells. Reduced glutathione (GSH) and oxidized glutathione (GSSG) levels were determined by fluorescence techniques. Production of reactive oxygen species (ROS) was monitored following 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate acetyl ester and MitoSOX™ Red-derived fluorescence. Cell viability was studied using the AlamarBlue® test. Cultured cells expressed markers typical of stellate cells. However, cell membrane receptors for melatonin could not be detected. Thapsigargin, bradykinin, or melatonin induced changes in intracellular free Ca2+ concentration. In the presence of the indole, a decrease in the GSH/GSSG ratio was observed that depended on the concentration of melatonin used. Furthermore, the indole evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Finally, melatonin decreased HPSC viability in a time and concentration-dependent manner. We conclude that melatonin, at pharmacological concentrations, induces changes in the oxidative state of HPSC. This might regulate cellular viability and could not involve specific plasma membrane receptors.


Asunto(s)
Glutatión/metabolismo , Melatonina/farmacología , Células Estrelladas Pancreáticas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Disulfuro de Glutatión/metabolismo , Humanos , Ratones , Páncreas/metabolismo , Células Estrelladas Pancreáticas/citología , Células Estrelladas Pancreáticas/efectos de los fármacos , Ratas , Receptor de Melatonina MT1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...