Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Cancer ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264834

RESUMEN

BACKGROUND: Overall, the prognosis of patients with chronic lymphocytic leukemia (CLL) in the early phase of the disease (Rai 0, Binet A) is favorable; some patients never require therapy. However, some patients require intervention shortly after diagnosis. In the past decade, several risk scores (RS) have been developed to predict disease progression, yet some patients are misclassified. On the other hand, IGHV subset 2 (IGHV2) predicts poor outcomes. METHODS: A retrospective and multicentric study was conducted to compare the accuracy of five different RS (IPS-E, CR0, AIPS-E, CLL-IPI, and Barcelona-Brno) to predict disease progression in 781 stage A previously untreated patients with CLL. As an exploratory analysis, it was further investigated whether the inclusion of the IGHV2 as a poor prognostic parameter improved the accuracy of RS. RESULTS: All the scores identified a similar group of patients with CLL in early stage with low-, intermediate-, and high-risk progression. Discrimination was high and similar in all RS (c-index = 0.74-0.79, area under the curve = 0.7-0.75), as well as calibration (p = .98) and parsimony, although CLL-IPI showed the best results (Akaike information criterion = 441). A total of 34.4% of patients were categorized within the same RS and concordance was at least moderate between RS. CONCLUSION: Moreover, the results suggest that IGHV2 may improve the accuracy of RS.

2.
Sci Data ; 11(1): 725, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956385

RESUMEN

Teratoma, due to its remarkable ability to differentiate into multiple cell lineages, is a valuable model for studying human embryonic development. The similarity of the gene expression and chromatin accessibility patterns in these cells to those observed in vivo further underscores its potential as a research tool. Notably, teratomas derived from human naïve (pre-implantation epiblast-like) pluripotent stem cells (PSCs) have larger embryonic cell diversity and contain extraembryonic lineages, making them more suitable to study developmental processes. However, the cell type-specific epigenetic profiles of naïve PSC teratomas have not been yet characterized. Using single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), we analyzed 66,384 cell profiles from five teratomas derived from human naïve PSCs and their post-implantation epiblast-like (primed) counterparts. We observed 17 distinct cell types from both embryonic and extraembryonic lineages, resembling the corresponding cell types in human fetal tissues. Additionally, we identified key transcription factors specific to different cell types. Our dataset provides a resource for investigating gene regulatory programs in a relevant model of human embryonic development.


Asunto(s)
Cromatina , Células Madre Pluripotentes , Análisis de la Célula Individual , Teratoma , Humanos , Teratoma/genética , Teratoma/patología , Células Madre Pluripotentes/metabolismo , Linaje de la Célula , Factores de Transcripción/genética
3.
Hum Genomics ; 18(1): 33, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566168

RESUMEN

The N6-methyladenosine (m6A) RNA modification plays essential roles in multiple biological processes, including stem cell fate determination. To explore the role of the m6A modification in pluripotent reprogramming, we used RNA-seq to map m6A effectors in human iPSCs, fibroblasts, and H9 ESCs, as well as in mouse ESCs and fibroblasts. By integrating the human and mouse RNA-seq data, we found that 19 m6A effectors were significantly upregulated in reprogramming. Notably, IGF2BPs, particularly IGF2BP1, were among the most upregulated genes in pluripotent cells, while YTHDF3 had high levels of expression in fibroblasts. Using quantitative PCR and Western blot, we validated the pluripotency-associated elevation of IGF2BPs. Knockdown of IGF2BP1 induced the downregulation of stemness genes and exit from pluripotency. Proteome analysis of cells collected at both the beginning and terminal states of the reprogramming process revealed that the IGF2BP1 protein was positively correlated with stemness markers SOX2 and OCT4. The eCLIP-seq target analysis showed that IGF2BP1 interacted with the coding sequence (CDS) and 3'UTR regions of the SOX2 transcripts, in agreement with the location of m6A modifications. This study identifies IGF2BP1 as a vital pluripotency-associated m6A effector, providing new insight into the interplay between m6A epigenetic modifications and pluripotent reprogramming.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Epigénesis Genética , Fibroblastos/metabolismo , Reprogramación Celular/genética
4.
Nature ; 629(8010): 154-164, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649488

RESUMEN

Muscle atrophy and functional decline (sarcopenia) are common manifestations of frailty and are critical contributors to morbidity and mortality in older people1. Deciphering the molecular mechanisms underlying sarcopenia has major implications for understanding human ageing2. Yet, progress has been slow, partly due to the difficulties of characterizing skeletal muscle niche heterogeneity (whereby myofibres are the most abundant) and obtaining well-characterized human samples3,4. Here we generate a single-cell/single-nucleus transcriptomic and chromatin accessibility map of human limb skeletal muscles encompassing over 387,000 cells/nuclei from individuals aged 15 to 99 years with distinct fitness and frailty levels. We describe how cell populations change during ageing, including the emergence of new populations in older people, and the cell-specific and multicellular network features (at the transcriptomic and epigenetic levels) associated with these changes. On the basis of cross-comparison with genetic data, we also identify key elements of chromatin architecture that mark susceptibility to sarcopenia. Our study provides a basis for identifying targets in the skeletal muscle that are amenable to medical, pharmacological and lifestyle interventions in late life.


Asunto(s)
Envejecimiento , Músculo Esquelético , Análisis de la Célula Individual , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Envejecimiento/genética , Envejecimiento/patología , Envejecimiento/fisiología , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética , Susceptibilidad a Enfermedades , Epigénesis Genética , Fragilidad/genética , Fragilidad/patología , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Sarcopenia/genética , Sarcopenia/patología , Transcriptoma
5.
Nat Genet ; 56(5): 938-952, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627596

RESUMEN

Cholestatic liver injuries, characterized by regional damage around the bile ductular region, lack curative therapies and cause considerable mortality. Here we generated a high-definition spatiotemporal atlas of gene expression during cholestatic injury and repair in mice by integrating spatial enhanced resolution omics sequencing and single-cell transcriptomics. Spatiotemporal analyses revealed a key role of cholangiocyte-driven signaling correlating with the periportal damage-repair response. Cholangiocytes express genes related to recruitment and differentiation of lipid-associated macrophages, which generate feedback signals enhancing ductular reaction. Moreover, cholangiocytes express high TGFß in association with the conversion of liver progenitor-like cells into cholangiocytes during injury and the dampened proliferation of periportal hepatocytes during recovery. Notably, Atoh8 restricts hepatocyte proliferation during 3,5-diethoxycarbonyl-1,4-dihydro-collidin damage and is quickly downregulated after injury withdrawal, allowing hepatocytes to respond to growth signals. Our findings lay a keystone for in-depth studies of cellular dynamics and molecular mechanisms of cholestatic injuries, which may further develop into therapies for cholangiopathies.


Asunto(s)
Colestasis , Hepatocitos , Animales , Ratones , Colestasis/genética , Colestasis/patología , Colestasis/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/lesiones , Hígado/patología , Proliferación Celular/genética , Conductos Biliares/metabolismo , Regeneración Hepática/genética , Ratones Endogámicos C57BL , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Transducción de Señal , Masculino , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Transcriptoma , Modelos Animales de Enfermedad , Análisis Espacio-Temporal
7.
Nat Commun ; 15(1): 583, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233381

RESUMEN

In contrast to rodents, the mechanisms underlying human trophectoderm and early placenta specification are understudied due to ethical barriers and the scarcity of embryos. Recent reports have shown that human pluripotent stem cells (PSCs) can differentiate into trophectoderm (TE)-like cells (TELCs) and trophoblast stem cells (TSCs), offering a valuable in vitro model to study early placenta specification. Here, we demonstrate that the VGLL1 (vestigial-like family member 1), which is highly expressed during human and non-human primate TE specification in vivo but is negligibly expressed in mouse, is a critical regulator of cell fate determination and self-renewal in human TELCs and TSCs derived from naïve PSCs. Mechanistically, VGLL1 partners with the transcription factor TEAD4 (TEA domain transcription factor 4) to regulate chromatin accessibility at target gene loci through histone acetylation and acts in cooperation with GATA3 and TFAP2C. Our work is relevant to understand primate early embryogenesis and how it differs from other mammalian species.


Asunto(s)
Células Madre Pluripotentes , Factores de Transcripción , Embarazo , Femenino , Humanos , Ratones , Animales , Linaje de la Célula/genética , Factores de Transcripción/genética , Trofoblastos/fisiología , Diferenciación Celular/genética , Mamíferos , Primates , Proteínas de Unión al ADN/genética , Factores de Transcripción de Dominio TEA
8.
Sci Data ; 10(1): 755, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919270

RESUMEN

Pluripotent stem cells (PSCs) provide unlimited resources for regenerative medicine because of their potential for self-renewal and differentiation into many different cell types. The pluripotency of these PSCs is dynamically regulated at multiple cellular organelle levels. To delineate the factors that coordinate this inter-organelle crosstalk, we profiled those long non-coding RNAs (lncRNAs) that may participate in the regulation of multiple cellular organelles in PSCs. We have developed a unique strand-specific RNA-seq dataset of lncRNAs that may interact with mitochondria (mtlncRNAs) and polyribosomes (prlncRNAs). Among the lncRNAs differentially expressed between induced pluripotent stem cells (iPSCs), fibroblasts, and positive control H9 human embryonic stem cells, we identified 11 prlncRNAs related to stem cell reprogramming and exit from pluripotency. In conjunction with the total RNA-seq data, this dataset provides a valuable resource to examine the role of lncRNAs in pluripotency, particularly for studies investigating the inter-organelle crosstalk network involved in germ cell development and human reproduction.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , ARN Largo no Codificante , Humanos , Diferenciación Celular , Reprogramación Celular , Mitocondrias/genética , Mitocondrias/metabolismo , Polirribosomas , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
10.
Cell Stem Cell ; 30(9): 1235-1245.e6, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37683604

RESUMEN

Heterologous organ transplantation is an effective way of replacing organ function but is limited by severe organ shortage. Although generating human organs in other large mammals through embryo complementation would be a groundbreaking solution, it faces many challenges, especially the poor integration of human cells into the recipient tissues. To produce human cells with superior intra-niche competitiveness, we combined optimized pluripotent stem cell culture conditions with the inducible overexpression of two pro-survival genes (MYCN and BCL2). The resulting cells had substantially enhanced viability in the xeno-environment of interspecies chimeric blastocyst and successfully formed organized human-pig chimeric middle-stage kidney (mesonephros) structures up to embryonic day 28 inside nephric-defective pig embryos lacking SIX1 and SALL1. Our findings demonstrate proof of principle of the possibility of generating a humanized primordial organ in organogenesis-disabled pigs, opening an exciting avenue for regenerative medicine and an artificial window for studying human kidney development.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Porcinos , Animales , Mesonefro , Embrión de Mamíferos , Blastocisto , Mamíferos , Proteínas de Homeodominio
12.
Life (Basel) ; 13(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37109593

RESUMEN

Advanced heart failure is a growing problem for which the best treatment is cardiac transplantation. However, the shortage of donors' hearts made left ventricular assist devices as destination therapy (DT-LVAD) a highly recommended alternative: they improved mid-term prognosis as well as patients' quality of life. Current intracorporeal pumps with a centrifugal continuous flow evolved in the last few years. Since 2003, when first LVAD was approved for long-term support, smaller device sizes with better survival and hemocompatibility profile were reached. The most important difficulty lies in the moment of the implant. Recent indications range from INTERMACS class 2 to 4, with close monitoring in intermediate cases. Moreover, a large multiparametric study is needed for considering the candidacy: basal situation, with a special interest in frailty, comorbidities, including renal and hepatic dysfunction, and medical background, considering every prior cardiac condition, must be evaluated. In addition, some clinical risk scores can be helpful to measure the possibility of right heart failure or morbi-mortality. With this review, we sought to summarize all the device improvements, with their updated clinical results, as well as to focus on all the patient selection criteria.

13.
Cell Stem Cell ; 30(4): 362-377.e7, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028403

RESUMEN

Human stem cell-derived blastoids display similar morphology and cell lineages to normal blastocysts. However, the ability to investigate their developmental potential is limited. Here, we construct cynomolgus monkey blastoids resembling blastocysts in morphology and transcriptomics using naive ESCs. These blastoids develop to embryonic disk with the structures of yolk sac, chorionic cavity, amnion cavity, primitive streak, and connecting stalk along the rostral-caudal axis through prolonged in vitro culture (IVC). Primordial germ cells, gastrulating cells, visceral endoderm/yolk sac endoderm, three germ layers, and hemato-endothelial progenitors in IVC cynomolgus monkey blastoids were observed by single-cell transcriptomics or immunostaining. Moreover, transferring cynomolgus monkey blastoids to surrogates achieves pregnancies, as indicated by progesterone levels and presence of early gestation sacs. Our results reveal the capacity of in vitro gastrulation and in vivo early pregnancy of cynomolgus monkey blastoids, providing a useful system to dissect primate embryonic development without the same ethical concerns and access challenges in human embryo study.


Asunto(s)
Embrión de Mamíferos , Gastrulación , Embarazo , Animales , Femenino , Humanos , Macaca fascicularis , Estratos Germinativos , Desarrollo Embrionario , Endodermo , Diferenciación Celular
14.
Zool Res ; 44(3): 451-466, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-36994536

RESUMEN

Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis, a major cause of morbidity and mortality worldwide. However, there are currently no effective anti-fibrotic therapies available, especially for late-stage patients, which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cell-specific responses in different fibrosis stages. To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes, we generated a single-nucleus transcriptomic atlas encompassing 49 919 nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride (CCl 4)-induced progressive liver fibrosis. Integrative analysis distinguished the sequential responses to injury of hepatocytes, hepatic stellate cells and endothelial cells. Moreover, we reconstructed cell-cell interactions and gene regulatory networks implicated in these processes. These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions, dysfunction for clearance by apoptosis of activated hepatic stellate cells, accumulation of pro-fibrotic signals, and the switch from an anti-angiogenic to a pro-angiogenic program during CCl 4-induced progressive liver fibrosis. Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.


Asunto(s)
Células Endoteliales , Cirrosis Hepática , Ratones , Animales , Células Endoteliales/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/veterinaria , Tetracloruro de Carbono/toxicidad , Comunicación Celular , Mamíferos
15.
J Clin Med ; 12(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36835907

RESUMEN

Tricuspid regurgitation (TR) is one of the most common heart valve diseases, associated a with poor prognosis since significant TR is associated with an increased mortality risk compared to no TR or mild regurgitation. Surgery is the standard treatment for TR, although it is associated with high morbidity, mortality, and prolonged hospitalization, particularly in tricuspid reoperation after left-sided surgery. Thus, several innovative percutaneous transcatheter approaches for repair and replacement of the tricuspid valve have gathered significant momentum and have undergone extensive clinical development in recent years, with favorable clinical outcomes in terms of mortality and rehospitalization during the first year of follow-up. We present three clinical cases of transcatheter tricuspid valve replacement in an orthotopic position with two different innovative systems along with a review of the state-of-the-art of this emergent topic.

18.
Nature ; 613(7942): 169-178, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544018

RESUMEN

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Asunto(s)
Envejecimiento , Senescencia Celular , Inflamación , Músculo Esquelético , Regeneración , Nicho de Células Madre , Anciano , Animales , Humanos , Ratones , Envejecimiento/metabolismo , Envejecimiento/fisiología , Senescencia Celular/fisiología , Inflamación/metabolismo , Inflamación/fisiopatología , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Células Madre/fisiología , Fibrosis/fisiopatología , Nicho de Células Madre/fisiología , Transcriptoma , Cromatina/genética , Gerociencia
19.
Commun Earth Environ ; 4(1): 102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665203

RESUMEN

Including sea-level rise (SLR) projections in planning and implementing coastal adaptation is crucial. Here we analyze the first global survey on the use of SLR projections for 2050 and 2100. Two-hundred and fifty-three coastal practitioners engaged in adaptation/planning from 49 countries provided complete answers to the survey which was distributed in nine languages - Arabic, Chinese, English, French, Hebrew, Japanese, Korean, Portuguese and Spanish. While recognition of the threat of SLR is almost universal, only 72% of respondents currently utilize SLR projections. Generally, developing countries have lower levels of utilization. There is no global standard in the use of SLR projections: for locations using a standard data structure, 53% are planning using a single projection, while the remainder are using multiple projections, with 13% considering a low-probability high-end scenario. Countries with histories of adaptation and consistent national support show greater assimilation of SLR projections into adaptation decisions. This research provides new insights about current planning practices and can inform important ongoing efforts on the application of the science that is essential to the promotion of effective adaptation.

20.
Dev Cell ; 57(24): 2731-2744.e5, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36495875

RESUMEN

Embryonic stem cells (ESCs) are self-renewing and pluripotent. In recent years, factors that control pluripotency, mostly nuclear, have been identified. To identify non-nuclear regulators of ESCs, we screened an endogenously labeled fluorescent fusion-protein library in mouse ESCs. One of the more compelling hits was the cell-cycle-associated protein 1 (CAPRIN1). CAPRIN1 knockout had little effect in ESCs, but it significantly altered differentiation and gene expression programs. Using RIP-seq and SLAM-seq, we found that CAPRIN1 associates with, and promotes the degradation of, thousands of RNA transcripts. CAPRIN1 interactome identified XRN2 as the likely ribonuclease. Upon early ESC differentiation, XRN2 is located in the nucleus and colocalizes with CAPRIN1 in small RNA granules in a CAPRIN1-dependent manner. We propose that CAPRIN1 regulates an RNA degradation pathway operating during early ESC differentiation, thus eliminating undesired spuriously transcribed transcripts in ESCs.


Asunto(s)
Proteínas de Ciclo Celular , Exorribonucleasas , Células Madre Embrionarias de Ratones , Animales , Ratones , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Estabilidad del ARN , Exorribonucleasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA