Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(6): 719-730, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747055

RESUMEN

Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, provides a potential treatment avenue for drug-resistant cancers and may play a role in the pathology of some degenerative diseases. Identifying the subcellular membranes essential for ferroptosis and the sequence of their peroxidation will illuminate drug discovery strategies and ferroptosis-relevant disease mechanisms. In this study, we employed fluorescence and stimulated Raman scattering imaging to examine the structure-activity-distribution relationship of ferroptosis-modulating compounds. We found that, although lipid peroxidation in various subcellular membranes can induce ferroptosis, the endoplasmic reticulum (ER) membrane is a key site of lipid peroxidation. Our results suggest an ordered progression model of membrane peroxidation during ferroptosis that accumulates initially in the ER membrane and later in the plasma membrane. Thus, the design of ER-targeted inhibitors and inducers of ferroptosis may be used to optimally control the dynamics of lipid peroxidation in cells undergoing ferroptosis.


Asunto(s)
Ferroptosis , Peroxidación de Lípido/fisiología , Muerte Celular , Membrana Celular/metabolismo , Hierro/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34521752

RESUMEN

CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.


Asunto(s)
Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Daño del ADN/genética , Linfoma/genética , Linfoma/patología , Fosforilación/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Ratones , Mutación/genética , Translocación Genética/genética
3.
J Immunol ; 206(6): 1228-1239, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33536256

RESUMEN

Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays. In this article, we show that in mouse models, knock-in ATM-R3057X mutation (Atm⁠ RX ⁠, corresponding to R3047X in human ATM) severely compromises ATM protein stability and causes T cell developmental defects, B cell Ig class-switch recombination defects, and infertility resembling ATM-null. The residual ATM-R3057X protein retains minimal yet functional measurable DNA damage-induced checkpoint activation and significantly delays lymphomagenesis in Atm⁠ RX/RX ⁠ mice compared with Atm⁠ -/- ⁠. Together, these results support a physiological role of the FATC domain in ATM protein stability and show that the presence of minimal residual ATM-R3057X protein can prevent growth retardation and delay tumorigenesis without restoring lymphocyte development and fertility.


Asunto(s)
Linfocitos/inmunología , Linfoma/genética , Dominios Proteicos/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinogénesis/genética , Carcinogénesis/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Codón sin Sentido , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Humanos , Linfocitos/patología , Linfoma/inmunología , Linfoma/patología , Masculino , Ratones , Ratones Noqueados , Estabilidad Proteica , Recombinación V(D)J/genética , Recombinación V(D)J/inmunología
4.
Cancer Res ; 81(2): 426-437, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239428

RESUMEN

ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Daño del ADN , Mutación , Neoplasias/genética , Animales , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Estimación de Kaplan-Meier , Linfocitos/metabolismo , Linfocitos/patología , Ratones Noqueados , Ratones Transgénicos , Neoplasias/metabolismo
5.
Proc Natl Acad Sci U S A ; 117(37): 22953-22961, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32868446

RESUMEN

The DNA-dependent protein kinase (DNA-PK), which is composed of the KU heterodimer and the large catalytic subunit (DNA-PKcs), is a classical nonhomologous end-joining (cNHEJ) factor. Naïve B cells undergo class switch recombination (CSR) to generate antibodies with different isotypes by joining two DNA double-strand breaks at different switching regions via the cNHEJ pathway. DNA-PK and the cNHEJ pathway play important roles in the DNA repair phase of CSR. To initiate cNHEJ, KU binds to DNA ends and recruits and activates DNA-PK. Activated DNA-PK phosphorylates DNA-PKcs at the S2056 and T2609 clusters. Loss of T2609 cluster phosphorylation increases radiation sensitivity but whether T2609 phosphorylation has a role in physiological DNA repair remains elusive. Using the DNA-PKcs5A mouse model carrying alanine substitutions at the T2609 cluster, here we show that loss of T2609 phosphorylation of DNA-PKcs does not affect the CSR efficiency. Yet, the CSR junctions recovered from DNA-PKcs5A/5A B cells reveal increased chromosomal translocations, extensive use of distal switch regions (consistent with end resection), and preferential usage of microhomology-all signs of the alternative end-joining pathway. Thus, these results uncover a role of DNA-PKcs T2609 phosphorylation in promoting cNHEJ repair pathway choice during CSR.


Asunto(s)
Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Cambio de Clase de Inmunoglobulina/genética , Animales , Linfocitos B/inmunología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Femenino , Reordenamiento Génico , Humanos , Cambio de Clase de Inmunoglobulina/fisiología , Región de Cambio de la Inmunoglobulina/genética , Inmunoglobulinas/genética , Autoantígeno Ku/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Fosforilación , Recombinación Genética/genética , Translocación Genética
6.
Nucleic Acids Res ; 48(17): 9694-9709, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32890402

RESUMEN

DNA breaks recruit and activate PARP1/2, which deposit poly-ADP-ribose (PAR) to recruit XRCC1-Ligase3 and other repair factors to promote DNA repair. Clinical PARP inhibitors (PARPi) extend the lifetime of damage-induced PARP1/2 foci, referred to as 'trapping'. To understand the molecular nature of 'trapping' in cells, we employed quantitative live-cell imaging and fluorescence recovery after photo-bleaching. Unexpectedly, we found that PARP1 exchanges rapidly at DNA damage sites even in the presence of clinical PARPi, suggesting the persistent foci are not caused by physical stalling. Loss of Xrcc1, a major downstream effector of PAR, also caused persistent PARP1 foci without affecting PARP1 exchange. Thus, we propose that the persistent PARP1 foci are formed by different PARP1 molecules that are continuously recruited to and exchanging at DNA lesions due to attenuated XRCC1-LIG3 recruitment and delayed DNA repair. Moreover, mutation analyses of the NAD+ interacting residues of PARP1 showed that PARP1 can be physically trapped at DNA damage sites, and identified H862 as a potential regulator for PARP1 exchange. PARP1-H862D, but not PARylation-deficient PARP1-E988K, formed stable PARP1 foci upon activation. Together, these findings uncovered the nature of persistent PARP1 foci and identified NAD+ interacting residues involved in the PARP1 exchange.


Asunto(s)
Daño del ADN , Reparación del ADN/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Reparación del ADN/fisiología , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Indazoles/farmacología , Cinética , Imagen Molecular , NAD/metabolismo , Piperidinas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
7.
Nature ; 579(7798): 291-296, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32103174

RESUMEN

The DNA-dependent protein kinase (DNA-PK), which comprises the KU heterodimer and a catalytic subunit (DNA-PKcs), is a classical non-homologous end-joining (cNHEJ) factor1. KU binds to DNA ends, initiates cNHEJ, and recruits and activates DNA-PKcs. KU also binds to RNA, but the relevance of this interaction in mammals is unclear. Here we use mouse models to show that DNA-PK has an unexpected role in the biogenesis of ribosomal RNA (rRNA) and in haematopoiesis. The expression of kinase-dead DNA-PKcs abrogates cNHEJ2. However, most mice that both expressed kinase-dead DNA-PKcs and lacked the tumour suppressor TP53 developed myeloid disease, whereas all other previously characterized mice deficient in both cNHEJ and TP53 expression succumbed to pro-B cell lymphoma3. DNA-PK autophosphorylates DNA-PKcs, which is its best characterized substrate. Blocking the phosphorylation of DNA-PKcs at the T2609 cluster, but not the S2056 cluster, led to KU-dependent defects in 18S rRNA processing, compromised global protein synthesis in haematopoietic cells and caused bone marrow failure in mice. KU drives the assembly of DNA-PKcs on a wide range of cellular RNAs, including the U3 small nucleolar RNA, which is essential for processing of 18S rRNA4. U3 activates purified DNA-PK and triggers phosphorylation of DNA-PKcs at T2609. DNA-PK, but not other cNHEJ factors, resides in nucleoli in an rRNA-dependent manner and is co-purified with the small subunit processome. Together our data show that DNA-PK has RNA-dependent, cNHEJ-independent functions during ribosome biogenesis that require the kinase activity of DNA-PKcs and its phosphorylation at the T2609 cluster.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Hematopoyesis/genética , Autoantígeno Ku/metabolismo , Linfoma/enzimología , Linfoma/fisiopatología , ARN Ribosómico 18S/metabolismo , Proteínas de Unión al Calcio/genética , Dominio Catalítico/fisiología , Reparación del ADN/genética , Activación Enzimática/genética , Células HeLa , Humanos , Linfoma/genética , Modelos Animales , Mutación , Fosforilación , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Ribosómico 18S/genética , ARN Nucleolar Pequeño/metabolismo
8.
J Exp Med ; 216(7): 1648-1663, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31097467

RESUMEN

B cell development requires efficient proliferation and successful assembly and modifications of the immunoglobulin gene products. CtIP is an essential gene implicated in end resection and DNA repair. Here, we show that CtIP is essential for early B cell development but dispensable in naive B cells. CtIP loss is well tolerated in G1-arrested B cells and during V(D)J recombination, but in proliferating B cells, CtIP loss leads to a progressive cell death characterized by ATM hyperactivation, G2/M arrest, genomic instability, and 53BP1 nuclear body formation, indicating that the essential role of CtIP during proliferation underscores its stage-specific requirement in B cells. B cell proliferation requires phosphorylation of CtIP at T847 presumably by CDK, but not its interaction with CtBP or Rb or its nuclease activity. CtIP phosphorylation by ATM/ATR at T859 (T855 in mice) promotes end resection in G1-arrested cells but is dispensable for B cell development and class switch recombination, suggesting distinct roles for T859 and T847 phosphorylation in B cell development.


Asunto(s)
Linfocitos B/fisiología , Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/fisiología , Activación de Linfocitos/fisiología , Animales , Muerte Celular , Proliferación Celular/fisiología , Puntos de Control de la Fase G2 del Ciclo Celular , Puntos de Control de la Fase M del Ciclo Celular , Ratones , Fosforilación , Recombinación V(D)J/fisiología
9.
J Immunol ; 203(1): 178-187, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31101667

RESUMEN

The classical nonhomologous end-joining (cNHEJ) pathway is a major DNA double-strand break repair pathway in mammalian cells and is required for lymphocyte development and maturation. The DNA-dependent protein kinase (DNA-PK) is a cNHEJ factor that encompasses the Ku70-Ku80 (KU) heterodimer and the large DNA-PK catalytic subunit (DNA-PKcs). In mouse models, loss of DNA-PKcs (DNA-PKcs-/- ) abrogates end processing (e.g., hairpin opening), but not end-ligation, whereas expression of the kinase-dead DNA-PKcs protein (DNA-PKcsKD/KD ) abrogates end-ligation, suggesting a kinase-dependent structural function of DNA-PKcs during cNHEJ. Lymphocyte development is abolished in DNA-PKcs-/- and DNA-PKcsKD/KD mice because of the requirement for both hairpin opening and end-ligation during V(D)J recombination. DNA-PKcs itself is the best-characterized substrate of DNA-PK. The S2056 cluster is the best-characterized autophosphorylation site in human DNA-PKcs. In this study, we show that radiation can induce phosphorylation of murine DNA-PKcs at the corresponding S2053. We also generated knockin mouse models with alanine- (DNA-PKcsPQR) or phospho-mimetic aspartate (DNA-PKcsSD) substitutions at the S2053 cluster. Despite moderate radiation sensitivity in the DNA-PKcsPQR/PQR fibroblasts and lymphocytes, both DNA-PKcsPQR/PQR and DNA-PKcsSD/SD mice retained normal kinase activity and underwent efficient V(D)J recombination and class switch recombination, indicating that phosphorylation at the S2053 cluster of murine DNA-PKcs (corresponding to S2056 of human DNA-PKcs), although important for radiation resistance, is dispensable for the end-ligation and hairpin-opening function of DNA-PK essential for lymphocyte development.


Asunto(s)
Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Fibroblastos/fisiología , Linfocitos/fisiología , Animales , Diferenciación Celular/genética , Línea Celular , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Fibroblastos/efectos de la radiación , Técnicas de Sustitución del Gen , Humanos , Cambio de Clase de Inmunoglobulina/genética , Activación de Linfocitos , Linfocitos/efectos de la radiación , Ratones , Ratones Noqueados , Mutación/genética , Tolerancia a Radiación , Serina/genética
10.
Proc Natl Acad Sci U S A ; 115(34): 8615-8620, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30072430

RESUMEN

The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is a classical nonhomologous end-joining (cNHEJ) factor. Loss of DNA-PKcs diminished mature B cell class switch recombination (CSR) to other isotypes, but not IgG1. Here, we show that expression of the kinase-dead DNA-PKcs (DNA-PKcsKD/KD ) severely compromises CSR to IgG1. High-throughput sequencing analyses of CSR junctions reveal frequent accumulation of nonproductive interchromosomal translocations, inversions, and extensive end resection in DNA-PKcsKD/KD , but not DNA-PKcs-/- , B cells. Meanwhile, the residual joints from DNA-PKcsKD/KD cells and the efficient Sµ-Sγ1 junctions from DNA-PKcs-/- B cells both display similar preferences for small (2-6 nt) microhomologies (MH). In DNA-PKcs-/- cells, Sµ-Sγ1 joints are more resistant to inversions and extensive resection than Sµ-Sε and Sµ-Sµ joints, providing a mechanism for the isotype-specific CSR defects. Together, our findings identify a kinase-dependent role of DNA-PKcs in suppressing MH-mediated end joining and a structural role of DNA-PKcs protein in the orientation of CSR.


Asunto(s)
Linfocitos B/enzimología , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Cambio de Clase de Inmunoglobulina/fisiología , Inmunoglobulina G/biosíntesis , Proteínas Nucleares/metabolismo , Recombinación Genética/fisiología , Animales , Linfocitos B/citología , Línea Celular , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Inmunoglobulina G/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA