Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942472

RESUMEN

During navigation, the neocortex must actively integrate learned spatial context with current sensory experience to guide behaviours. However, the relative encoding of spatial and sensorimotor information among cortical cells, and whether hippocampal feedback continues to modify these properties in familiar environments, remains poorly understood. Thus, two-photon microscopy of male and female Thy1-GCaMP6s mice was used to longitudinally image neurons spanning superficial retrosplenial cortex and layers II-Va of primary and secondary motor cortices before and after bilateral dorsal hippocampal lesions. During behaviour on a familiar cued treadmill, the locations of two added obstacles were interchanged to decouple place-tuning from cue-tuning among the position correlated cells with fields at those locations. The subpopulations of place- and cue-tuned cells each formed interareal gradients such that higher-level cortical regions exhibited higher fractions of place cells, whereas lower-level regions exhibited higher fractions of cue cells. Position correlated cells in motor cortex also formed translaminar gradients; cells closer to the cortical surface were more likely to exhibit fields and were more sparsely and precisely tuned than deeper cells. After dorsal hippocampal lesions, a neural representation of the learned environment persisted but retrosplenial cortex exhibited significantly increased cue-tuning and, in motor cortices, both position correlated cell recruitment and population activity at the unstable obstacle locations became more homogeneously elevated across laminae. Altogether, these results support that the hippocampus continues to modulate cortical responses in familiar environments, and the relative impact of top-down feedback obeys hierarchical interareal and interlaminar gradients opposite to the flow of bottom-up sensory inputs.Significance statement During learning, the hippocampus imparts spatial context to memory representations throughout the superficial neocortex. However, the post-learning role of the hippocampus has not been well defined. The results of this study suggest that, during navigation of a familiar environment, the hippocampus continues to link unreliable sensory attributes to a stable contextual framework, effectively updating the learned model of the environment. The results are also consistent with top-down suppression of sensory-evoked activity during behaviour, which varied in strength according to hierarchical proximity to the hippocampus. This effect was abolished by bilateral lesions of the dorsal hippocampus, supporting that the hippocampus plays an ongoing role in propagating context-dependent predictions throughout the cortical hierarchy, a core hypothesis of the predictive coding theoretical framework.

2.
Biol Psychiatry Glob Open Sci ; 4(1): 275-283, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38298796

RESUMEN

Background: The ability of psychedelic compounds to profoundly alter mental function has been long known, but the underlying changes in cellular-level information encoding remain poorly understood. Methods: We used two-photon microscopy to record from the retrosplenial cortex in head-fixed mice running on a treadmill before and after injection of the nonclassic psychedelic ibogaine (40 mg/kg intraperitoneally). Results: We found that the cognitive map, formed by the representation of position encoded by ensembles of individual neurons in the retrosplenial cortex, was destabilized by ibogaine when mice had to infer position between tactile landmarks. This corresponded with increased neural activity rates, loss of correlation structure, and increased responses to cues. Ibogaine had surprisingly little effect on the size-frequency distribution of network activity events, suggesting that signal propagation within the retrosplenial cortex was largely unaffected. Conclusions: Taken together, these data support proposals that compounds with psychedelic properties disrupt representations that are important for constraining neocortical activity, thereby increasing the entropy of neural signaling. Furthermore, the loss of expected position encoding between landmarks recapitulated effects of hippocampal impairment, suggesting that disruption of cognitive maps or other hippocampal processing may be a contributing mechanism of discoordinated neocortical activity in psychedelic states.

3.
Phys Rev E ; 108(5): L052301, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115411

RESUMEN

Does the brain optimize itself for storage and transmission of information, and if so, how? The critical brain hypothesis is based in statistical physics and posits that the brain self-tunes its dynamics to a critical point or regime to maximize the repertoire of neuronal responses. Yet, the robustness of this regime, especially with respect to changes in the functional connectivity, remains an unsolved fundamental challenge. Here, we show that both scale-free neuronal dynamics and self-similar features of behavioral dynamics persist following significant changes in functional connectivity. Specifically, we find that the psychedelic compound ibogaine that is associated with an altered state of consciousness fundamentally alters the functional connectivity in the retrosplenial cortex of mice. Yet, the scale-free statistics of movement and of neuronal avalanches among behaviorally related neurons remain largely unaltered. This indicates that the propagation of information within biological neural networks is robust to changes in functional organization of subpopulations of neurons, opening up a new perspective on how the adaptive nature of functional networks may lead to optimality of information transmission in the brain.


Asunto(s)
Encéfalo , Modelos Neurológicos , Ratones , Animales , Encéfalo/fisiología , Estado de Conciencia/fisiología , Neuronas/fisiología , Red Nerviosa/fisiología
4.
Nat Commun ; 14(1): 7748, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012135

RESUMEN

Episodic memories comprise diverse attributes of experience distributed across neocortical areas. The hippocampus is integral to rapidly binding these diffuse representations, as they occur, to be later reinstated. However, the nature of the information exchanged during this hippocampal-cortical dialogue remains poorly understood. A recent study has shown that the secondary motor cortex carries two types of representations: place cell-like activity, which were impaired by hippocampal lesions, and responses tied to visuo-tactile cues, which became more pronounced following hippocampal lesions. Using two-photon Ca2+ imaging to record neuronal activities in the secondary motor cortex of male Thy1-GCaMP6s mice, we assessed the cortical retrieval of spatial and non-spatial attributes from previous explorations in a virtual environment. We show that, following navigation, spontaneous resting state reactivations convey varying degrees of spatial (trajectory sequences) and non-spatial (visuo-tactile attributes) information, while reactivations of non-spatial attributes tend to precede reactivations of spatial representations surrounding hippocampal sharp-wave ripples.


Asunto(s)
Memoria Episódica , Células de Lugar , Masculino , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Señales (Psicología)
5.
iScience ; 26(2): 105970, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36756366

RESUMEN

Systems-level memory consolidation, a key concept in memory research, involves the conversion of memories that depend on the hippocampus for their formation into efficient hippocampus-independent forms, presumably encoded by cortico-cortical connections. Yet, little is understood about the nature of consolidated neural codes at the cellular ensemble level. Mice require an intact hippocampus for "virtual" spatial learning and to develop neocortical representations of the corresponding experiences. We find that, whereas a novel virtual environment is neither learned nor represented in superficial cortex following severe damage to hippocampus, pre-operatively learned memories and their corresponding sparse and widespread neural ensemble representations in cortical layers II-III are preserved, a sine qua non of memory consolidation. These findings provide a new window for future study of the cellular mechanisms of memory consolidation.

6.
J Neurosci ; 41(2): 307-319, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33203745

RESUMEN

There has been considerable research showing populations of neurons encoding for different aspects of space in the brain. Recently, several studies using two-photon calcium imaging and virtual navigation have identified "spatially" modulated neurons in the posterior cortex. We enquire here whether the presence of such spatial representations may be a cortex-wide phenomenon and, if so, whether these representations can be organized in the absence of the hippocampus. To this end, we imaged the dorsal cortex of mice running on a treadmill populated with tactile cues. A high percentage (40-80%) of the detected neurons exhibited sparse, spatially localized activity, with activity fields uniformly localized over the track. The development of this location specificity was impaired by hippocampal damage. Thus, there is a substantial population of neurons distributed widely over the cortex that collectively form a continuous representation of the explored environment, and hippocampal outflow is necessary to organize this phenomenon.SIGNIFICANCE STATEMENT Increasing evidence points to the role of the neocortex in encoding spatial information. Whether this feature is linked to hippocampal functions is largely unknown. Here, we systematically surveyed multiple regions in the dorsal cortex of the same animal for the presence of signals encoding for spatial position. We described populations of cortical neurons expressing sequential patterns of activity localized in space in primary, secondary, and associational areas. Furthermore, we showed that the formation of these spatial representations was impacted by hippocampal lesion. Our results indicate that hippocampal inputs are necessary to maintain a precise cortical representation of space.


Asunto(s)
Hipocampo/fisiología , Neocórtex/fisiología , Percepción Espacial/fisiología , Algoritmos , Animales , Señales (Psicología) , Hipocampo/citología , Ratones , Ratones Transgénicos , Neocórtex/citología , Red Nerviosa/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Tacto
7.
Philos Trans R Soc Lond B Biol Sci ; 375(1799): 20190228, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32248779

RESUMEN

The brain likely uses offline periods to consolidate recent memories. One hypothesis holds that the hippocampal output provides a unique, global linking or 'index' code for each memory, and that this code is stored in the cortex in association with locally encoded attributes of each memory. Activation of the index code is hypothesized to evoke coordinated memory trace reactivation thus facilitating consolidation. Retrosplenial cortex (RSC) is a major recipient of hippocampal outflow and we have described populations of neurons there with sparse and orthogonal coding characteristics that resemble hippocampal 'place' cells, and whose expression depends on an intact hippocampus. Using two-photon Ca2+ imaging, we recorded ensembles of neurons in the RSC during periods of immobility before and after active running on a familiar linear treadmill track. Synchronous bursting of distinct groups of neurons occurred during rest both prior to and after running. In the second rest epoch, these patterns were associated with the locations of tactile landmarks and reward. Complementing established views on the functions of the RSC, our findings indicate that the structure is involved with processing landmark information during rest. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.


Asunto(s)
Giro del Cíngulo/fisiología , Consolidación de la Memoria/fisiología , Neuronas/fisiología , Animales , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...