Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 26(2)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38392373

RESUMEN

The Non-Informative Nuisance Parameter Principle concerns the problem of how inferences about a parameter of interest should be made in the presence of nuisance parameters. The principle is examined in the context of the hypothesis testing problem. We prove that the mixed test obeys the principle for discrete sample spaces. We also show how adherence of the mixed test to the principle can make performance of the test much easier. These findings are illustrated with new solutions to well-known problems of testing hypotheses for count data.

2.
Entropy (Basel) ; 25(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36673160

RESUMEN

The full Bayesian significance test (FBST) for precise hypotheses is a Bayesian alternative to the traditional significance tests based on p-values. The FBST is characterized by the e-value as an evidence index in favor of the null hypothesis (H). An important practical issue for the implementation of the FBST is to establish how small the evidence against H must be in order to decide for its rejection. In this work, we present a method to find a cutoff value for the e-value in the FBST by minimizing the linear combination of the averaged type-I and type-II error probabilities for a given sample size and also for a given dimensionality of the parameter space. Furthermore, we compare our methodology with the results obtained from the test with adaptive significance level, which presents the capital-P P-value as a decision-making evidence measure. For this purpose, the scenario of linear regression models with unknown variance under the Bayesian approach is considered.

3.
Entropy (Basel) ; 20(3)2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-33265285

RESUMEN

Measuring the dependence between random variables is one of the most fundamental problems in statistics, and therefore, determining the joint distribution of the relevant variables is crucial. Copulas have recently become an important tool for properly inferring the joint distribution of the variables of interest. Although many studies have addressed the case of continuous variables, few studies have focused on treating discrete variables. This paper presents a nonparametric approach to the estimation of joint discrete distributions with bounded support using copulas and Bernstein polynomials. We present an application in real obsessive-compulsive disorder data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...