Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells ; 31(11): 2343-53, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23922292

RESUMEN

The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.


Asunto(s)
Reprogramación Celular/fisiología , Células Madre Embrionarias/fisiología , Oocitos/fisiología , Células Madre Pluripotentes/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Transferencia Nuclear , Oocitos/citología , Oocitos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Tetraploidía
2.
PLoS One ; 7(6): e36850, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22693623

RESUMEN

While reprogramming a foreign nucleus after somatic cell nuclear transfer (SCNT), the enucleated oocyte (ooplasm) must signal that biomass and cellular requirements changed compared to the nucleus donor cell. Using cells expressing nuclear-encoded but mitochondria-targeted EGFP, a strategy was developed to directly distinguish maternal and embryonic products, testing ooplasm demands on transcriptional and post-transcriptional activity during reprogramming. Specifically, we compared transcript and protein levels for EGFP and other products in pre-implantation SCNT embryos, side-by-side to fertilized controls (embryos produced from the same oocyte pool, by intracytoplasmic injection of sperm containing the EGFP transgene). We observed that while EGFP transcript abundance is not different, protein levels are significantly lower in SCNT compared to fertilized blastocysts. This was not observed for Gapdh and Actb, whose protein reflected mRNA. This transcript-protein relationship indicates that the somatic nucleus can keep up with ooplasm transcript demands, whilst transcription and translation mismatch occurs after SCNT for certain mRNAs. We further detected metabolic disturbances after SCNT, suggesting a place among forces regulating post-transcriptional changes during reprogramming. Our observations ascribe oocyte-induced reprogramming with previously unsuspected regulatory dimensions, in that presence of functional proteins may no longer be inferred from mRNA, but rather depend on post-transcriptional regulation possibly modulated through metabolism.


Asunto(s)
Reprogramación Celular/fisiología , Mitocondrias/metabolismo , Oocitos/citología , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Reprogramación Celular/genética , Microscopía por Crioelectrón , Femenino , Peróxido de Hidrógeno/metabolismo , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/inmunología , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/ultraestructura , Oocitos/ultraestructura
3.
Int J Dev Biol ; 54(11-12): 1649-57, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21136379

RESUMEN

Cloned mouse embryo development to blastocyst stage correlates positively with the expression level of Oct4 (Pou5f1) at the morula stage, as reported previously by our laboratory. However, whether this correlation is based on a cause-effect relationship has remained unclear. To address this question, we artificially increased the level of Oct4 prior and subsequent to somatic cell nuclear transfer, by microinjection of Oct4 mRNA into ooplasts and by transgenic Oct4 induction at the morula stage, respectively. We observed higher developmental rates of cloned embryos to blastocyst when higher levels of Oct4 were superimposed with the initial reprogramming events; whereas increasing Oct4 at later stages of preimplantation development did not have a significant effect on developmental rates. Our results show that supplemental Oct4 facilitates oocyte-mediated reprogramming only during the first cleavages, implying that the higher Oct4 level observed in developmentally competent cloned morulae is a readout of reprogramming events that successfully took place earlier.


Asunto(s)
Reprogramación Celular/genética , Embrión de Mamíferos/metabolismo , Mórula/citología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Blastocisto/metabolismo , Separación Celular , Regulación del Desarrollo de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Mórula/metabolismo , Técnicas de Transferencia Nuclear , Factor 3 de Transcripción de Unión a Octámeros/genética , Reacción en Cadena de la Polimerasa , ARN Mensajero
4.
Development ; 137(24): 4159-69, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21098565

RESUMEN

The separation of the first two lineages - trophectoderm (TE) and inner cell mass (ICM) - is a crucial event in the development of the early embryo. The ICM, which constitutes the pluripotent founder cell population, develops into the embryo proper, whereas the TE, which comprises the surrounding outer layer, supports the development of the ICM before and after implantation. Cdx2, the first transcription factor expressed specifically in the developing TE, is crucial for the differentiation of cells into the TE, as lack of zygotic Cdx2 expression leads to a failure of embryos to hatch and implant into the uterus. However, speculation exists as to whether maternal Cdx2 is required for initiation of TE lineage separation. Here, we show that effective elimination of both maternal and zygotic Cdx2 transcripts by an RNA interference approach resulted in failure of embryo hatching and implantation, but the developing blastocysts exhibited normal gross morphology, indicating that TE differentiation had been initiated. Expression of keratin 8, a marker for differentiated TE, further confirmed the identity of the TE lineage in Cdx2-deficient embryos. However, these embryos exhibited low mitochondrial activity and abnormal ultrastructure, indicating that Cdx2 plays a key role in the regulation of TE function. Furthermore, we found that embryonic compaction does not act as a 'switch' regulator to turn on Cdx2 expression. Our results clearly demonstrate that neither maternal nor zygotic Cdx2 transcripts direct the initiation of ICM/TE lineage separation.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Factor de Transcripción CDX2 , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Proteínas de Homeodominio/genética , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Masculino , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Microscopía Electrónica de Transmisión , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Oocitos/citología , Embarazo , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética
5.
Biochem J ; 395(3): 619-28, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16451125

RESUMEN

The kinetics of proton transport through mammalian UCP1 (uncoupling protein 1) expressed in yeast mitochondria were measured. There was little or no UCP1 activity in the absence of added palmitate, but significant activity in its presence. The activator 4-HNE (4-hydroxy-2-nonenal) had little effect when added alone, but significantly enhanced proton conductance in the presence of added palmitate. Activation of the proton conductance of UCP1 was synergistic: proton conductance in the presence of both palmitate and 4-HNE was significantly greater than the sum of the individual effects. Mitochondria from control yeast transformed with empty vector showed no such synergy, showing that synergy is a property of UCP1. Activation by the 4-HNE analogue trans-cinnamate showed essentially the same characteristics as activation by 4-HNE. Mitochondria from brown adipose tissue also showed synergistic activation of GDP-sensitive proton conductance by palmitate and 4-HNE. These results show that reactive alkenals activate the proton conductance of UCP1 more strongly when fatty acids are also added, with implications for both mechanistic and physiological models of UCP1 activation.


Asunto(s)
Aldehídos/farmacología , Alquenos/farmacología , Proteínas Portadoras/metabolismo , Ácidos Grasos/farmacología , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Protones , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Alquenos/química , Animales , Proteínas Portadoras/genética , Bovinos , Conductividad Eléctrica , Canales Iónicos , Cinética , Potenciales de la Membrana/efectos de los fármacos , Proteínas de la Membrana/genética , Ratones , Proteínas Mitocondriales , Aceite de Palma , Aceites de Plantas/química , Unión Proteica , Ratas , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Albúmina Sérica Bovina/metabolismo , Proteína Desacopladora 1
6.
Cell Metab ; 2(2): 85-93, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16098826

RESUMEN

Evidence for the physiological functions of UCP2 and UCP3 is critically reviewed. They do not mediate adaptive thermogenesis, but they may be significantly thermogenic under specific pharmacological conditions. There is strong evidence that the mild regulated uncoupling they cause attenuates mitochondrial ROS production, protects against cellular damage, and diminishes insulin secretion. Evidence that they export fatty acids physiologically is weak. UCP2 and UCP3 are important potential targets for treatment of aging, degenerative diseases, diabetes, and perhaps obesity.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Termogénesis/fisiología , Envejecimiento/fisiología , Animales , Proteínas Portadoras/genética , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Insulina/metabolismo , Secreción de Insulina , Canales Iónicos , Proteínas de Transporte de Membrana/genética , Proteínas Mitocondriales/genética , Obesidad/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 2 , Proteína Desacopladora 3
7.
Biochim Biophys Acta ; 1709(1): 35-44, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16005426

RESUMEN

The mitochondrial uncoupling proteins UCP2 and UCP3 may be important in attenuating mitochondrial production of reactive oxygen species, in insulin signalling (UCP2), and perhaps in thermogenesis and other processes. To understand their physiological roles, it is necessary to know what reactions they are able to catalyse. We critically examine the evidence for proton transport and anion transport by UCP2 and UCP3. There is good evidence that they increase mitochondrial proton conductance when activated by superoxide, reactive oxygen species derivatives such as hydroxynonenal, and other alkenals or their analogues. However, they do not catalyse proton leak in the absence of such acute activation. They can also catalyse export of fatty acid and other anions, although the relationship of anion transport to proton transport remains controversial.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Portadoras/química , Catálisis , Humanos , Membranas Intracelulares/fisiología , Canales Iónicos , Proteínas de Transporte de Membrana/química , Proteínas Mitocondriales/química , Modelos Moleculares , Conformación Proteica , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 2 , Proteína Desacopladora 3
8.
Biofactors ; 24(1-4): 119-30, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16403971

RESUMEN

In this mini review we summarize recent studies from our laboratory that show the involvement of superoxide and the lipid peroxidation product 4-hydroxynonenal in the regulation of mitochondrial uncoupling. Superoxide produced during mitochondrial respiration is a major cause of the cellular oxidative damage that may underlie degenerative diseases and ageing. Superoxide production is very sensitive to the magnitude of the mitochondrial protonmotive force, so can be strongly decreased by mild uncoupling. Superoxide is able to give rise to other reactive oxygen species, which elicit deleterious effects primarily by oxidizing intracellular components, including lipids, DNA and proteins. Superoxide-induced lipid peroxidation leads to the production of reactive aldehydes, including 4-hydroxynonenal. These aldehydic lipid peroxidation products are in turn able to modify proteins such as mitochondrial uncoupling proteins and the adenine nucleotide translocase, converting them into active proton transporters. This activation induces mild uncoupling and so diminishes mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of energy production.


Asunto(s)
Aldehídos/farmacología , Estrés Oxidativo , Desacopladores/farmacología , Aldehídos/metabolismo , Animales , Proteínas Portadoras/efectos de los fármacos , Humanos , Canales Iónicos , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/fisiología , Proteínas de la Membrana/efectos de los fármacos , Mitocondrias/metabolismo , Translocasas Mitocondriales de ADP y ATP/metabolismo , Proteínas Mitocondriales , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno , Superóxidos/metabolismo , Superóxidos/farmacología , Proteína Desacopladora 1
9.
Free Radic Biol Med ; 37(6): 755-67, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15304252

RESUMEN

Mitochondria are potent producers of cellular superoxide, from complexes I and III of the electron transport chain, and mitochondrial superoxide production is a major cause of the cellular oxidative damage that may underlie degradative diseases and aging. This superoxide production is very sensitive to the proton motive force, so it can be strongly decreased by mild uncoupling. Superoxide and the lipid peroxidation products it engenders, including hydroxyalkenals such as hydroxynonenal, are potent activators of proton conductance by mitochondrial uncoupling proteins such as UCP2 and UCP3, although the mechanism of activation has yet to be established. These observations suggest a hypothesis for the main, ancestral function of uncoupling proteins: to cause mild uncoupling and so diminish mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of a small loss of energy. We review the growing evidence for this hypothesis, in mitochondria, in cells, and in vivo. More recently evolved roles of uncoupling proteins are in adaptive thermogenesis (UCP1) and perhaps as part of a signaling pathway to regulate insulin secretion in pancreatic beta cells (UCP2).


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas de la Membrana/fisiología , Proteínas de Transporte de Membrana/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Superóxidos/metabolismo , Envejecimiento , Aldehídos/química , Animales , Transporte de Electrón , Ácidos Grasos/metabolismo , Radicales Libres , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina , Canales Iónicos , Islotes Pancreáticos/citología , Peroxidación de Lípido , Ratones , Ratones Noqueados , Modelos Biológicos , Oxígeno/metabolismo , Protones , Transducción de Señal , Proteína Desacopladora 1 , Proteína Desacopladora 2 , Proteína Desacopladora 3
10.
Diabetes Metab Res Rev ; 20(2): 131-6, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15037988

RESUMEN

BACKGROUND: Renal disease associated with diabetes mellitus is a major problem among diabetic patients. The role of mitochondria in the pathogenesis of diabetes has received a large amount of attention in the last years, but many aspects of this subject are still poorly understood. In the present study, we studied the susceptibility of the mitochondrial permeability transition (MPT) on kidney mitochondria from the Goto-Kakizaki (GK) rat, an animal model featuring physiological and pathological alterations characteristic of type 2 diabetes. METHODS: Kidney mitochondria were isolated by differential centrifugations; mitochondrial electric transmembrane potential and calcium loading capacity were evaluated with a TPP+-selective electrode and with a calcium-sensitive fluorescent probe. Coenzyme Q9, Q10 and vitamin E were evaluated by high-performance liquid chromatography (HPLC). RESULTS: Kidney mitochondria from the diabetic animals had an increased susceptibility to the induction of the MPT by calcium. We observed a loss of calcium-loading capacity and a higher calcium-induced mitochondrial depolarization. Vitamin E and coenzyme Q9 were also increased in kidney mitochondria from GK rats. CONCLUSIONS: The results show an enhanced MPT activation in kidney mitochondria from GK rats, which lead us to suggest that this condition may be one major alteration triggered by chronic diabetes in kidney cells, ultimately leading to cell dysfunction.


Asunto(s)
Calcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/metabolismo , Enfermedades Renales/metabolismo , Mitocondrias/metabolismo , Análisis de Varianza , Animales , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/complicaciones , Modelos Animales de Enfermedad , Membranas Intracelulares/metabolismo , Enfermedades Renales/etiología , Masculino , Potenciales de la Membrana/fisiología , Permeabilidad , Ratas , Ratas Endogámicas , Ratas Wistar , Valores de Referencia , Ubiquinona/metabolismo , Vitamina E/metabolismo
11.
Biochem J ; 379(Pt 2): 309-15, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-14680474

RESUMEN

Q (coenzyme Q or ubiquinone) is reported to be a cofactor obligatory for proton transport by UCPs (uncoupling proteins) in liposomes [Echtay, Winkler and Klingenberg (2000) Nature (London) 408, 609-613] and for increasing the binding of the activator retinoic acid to UCP1 [Tomás, Ledesma and Rial (2002) FEBS Lett. 526, 63-65]. In the present study, yeast ( Saccharomyces cerevisiae ) mutant strains lacking Q and expressing UCP1 were used to determine whether Q was required for UCP function in mitochondria. Wild-type yeast strain and two mutant strains (CENDeltaCOQ3 and CENDeltaCOQ2), both not capable of synthesizing Q, were transformed with the mouse UCP1 gene. UCP1 activity was measured as fatty acid-dependent, GDP-sensitive proton conductance in mitochondria isolated from the cells. The activity of UCP1 was similar in both Q-containing and -deficient yeast mitochondria. We conclude that Q is neither an obligatory cofactor nor an activator of proton transport by UCP1 when it is expressed in yeast mitochondria.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Protones , Saccharomyces cerevisiae/metabolismo , Ubiquinona/fisiología , Canales Iónicos , Transporte Iónico , Proteínas Mitocondriales , Mutación , Saccharomyces cerevisiae/genética , Transformación Genética , Proteína Desacopladora 1
12.
Biochem Soc Symp ; (71): 203-13, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15777023

RESUMEN

Mitochondria are a major source of superoxide, formed by the one-electron reduction of oxygen during electron transport. Superoxide initiates oxidative damage to phospholipids, proteins and nucleic acids. This damage may be a major cause of degenerative disease and aging. In isolated mitochondria, superoxide production on the matrix side of the membrane is particularly high during reversed electron transport to complex I driven by oxidation of succinate or glycerol 3-phosphate. Reversed electron transport and superoxide production from complex I are very sensitive to proton motive force, and can be strongly decreased by mild uncoupling of oxidative phosphorylation. Both matrix superoxide and the lipid peroxidation product 4-hydroxy-trans-2-nonenal can activate uncoupling through endogenous UCPs (uncoupling proteins). We suggest that superoxide releases iron from aconitase, leading to a cascade of lipid peroxidation and the release of molecules such as hydroxy-nonenal that covalently modify and activate the proton conductance of UCPs and other proteins. A function of the UCPs may be to cause mild uncoupling in response to matrix superoxide and other oxidants, leading to lowered proton motive force and decreased superoxide production. This simple feedback loop would constitute a self-limiting cycle to protect against excessive superoxide production, leading to protection against aging, but at the cost of a small elevation of respiration and basal metabolic rate.


Asunto(s)
Envejecimiento , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Superóxidos/metabolismo , Animales , Canales Iónicos , Proteínas Mitocondriales , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 1
13.
EMBO J ; 22(16): 4103-10, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12912909

RESUMEN

Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.


Asunto(s)
Atractilósido/análogos & derivados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transducción de Señal , Desacopladores/metabolismo , Animales , Atractilósido/farmacología , Ácido Bongcréquico/farmacología , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Guanosina Difosfato/metabolismo , Humanos , Riñón/citología , Ratones , Ratones Noqueados , Translocasas Mitocondriales de ADP y ATP/farmacología , Modelos Biológicos , Fosforilación Oxidativa/efectos de los fármacos , Protones , Ratas , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Tretinoina/farmacología , Desacopladores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...