Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 148: 109512, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499216

RESUMEN

The global aquaculture industry has significant losses each year due to disease outbreaks. Antibiotics are one of the common methods to treat fish infections, but prolonged use can lead to the emergence of resistant strains. Aeromonas spp. Infections are a common and problematic disease in fish, and members of this genera can produce antibiotic resistant strains. Antimicrobial peptides (AMPs) have emerged as an alternative method to treat and prevent infections and pituitary adenylate cyclase activating polypeptide (PACAP) is a prominent member of this family. The objective of this research was to study PACAP's direct antimicrobial activity and its toxicity in fish cells. Four synthetic variants of the natural PACAP from Clarias gariepinus were tested in addition to the natural variant. The experimental results show a different antimicrobial activity against A. salmonicida and A. hydrophila of each PACAP variant, and for the first time show dependence on the culture broth used. Furthermore, the results suggest that the underlying mechanism of PACAP antimicrobial activity includes a bacterial membrane permeabilizing effect, classifying PACAP as a membrane disruptive AMP. This study also demonstrated that the five PACAP variants evaluated showed low toxicity in vitro, at concentrations relevant for in vivo applications. Therefore, PACAP could be a promising alternative to antibiotics in the aquaculture sector.


Asunto(s)
Antiinfecciosos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Bacterias , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Acuicultura
2.
Biomedicines ; 11(11)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38002050

RESUMEN

In a previous work, we proposed a vaccine chimeric antigen based on the fusion of the SARS-CoV-2 N protein to the extracellular domain of the human CD40 ligand (CD154). This vaccine antigen was named N-CD protein and its expression was carried out in HEK-293 stably transfected cells, grown in adherent conditions and serum-supplemented medium. The chimeric protein obtained in these conditions presented a consistent pattern of degradation. The immunization of mice and monkeys with this chimeric protein was able to induce a high N-specific IgG response with only two doses in pre-clinical experiments. In order to explore ways to diminish protein degradation, in the present work, the N and N-CD proteins were produced in suspension cultures and serum-free media following transient transfection of the HEK-293 clone 3F6, at different scales, including stirred-tank controlled bioreactors. The results showed negligible or no degradation of the target proteins. Further, clones stably expressing N-CD were obtained and adapted to suspension culture, obtaining similar results to those observed in the transient expression experiments in HEK-293-3F6. The evidence supports transient protein expression in suspension cultures and serum-free media as a powerful tool to produce in a short period of time high levels of complex proteins susceptible to degradation, such as the SARS-CoV-2 N protein.

3.
Pathogens ; 12(11)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003829

RESUMEN

The control of ticks through vaccination offers a sustainable alternative to the use of chemicals that cause contamination and the selection of resistant tick strains. However, only a limited number of anti-tick vaccines have reached commercial realization. In this sense, an antigen effective against different tick species is a desirable target for developing such vaccines. A peptide derived from the tick P0 protein (pP0) conjugated to a carrier protein has been demonstrated to be effective against the Rhipicephalus microplus, Rhipicephalus sanguineus, and Amblyomma mixtum tick species. The aim of this work was to assess the efficacy of this peptide when conjugated to the Bm86 protein against Dermacentor nitens and Ixodes ricinus ticks. An RNAi experiment using P0 dsRNA from I. ricinus showed a dramatic reduction in the feeding of injected female ticks on guinea pigs. In the follow-up vaccination experiments, rabbits were immunized with the pP0-Bm86 conjugate and challenged simultaneously with larvae, nymphs, and the adults of I. ricinus ticks. In the same way, horses were immunized with the pP0-Bm86 conjugate and challenged with D. nitens larva. The pP0-Bm86 conjugate showed efficacies of 63% and 55% against I. ricinus and D. nitens ticks, respectively. These results, combined with previous reports of efficacy for this conjugate, show the promising potential for its development as a broad-spectrum anti-tick vaccine.

4.
Antibiotics (Basel) ; 12(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37887185

RESUMEN

Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is a multifunctional neuropeptide that is widely distributed and conserved across species. We have previously shown that in teleost fish, PACAP not only possesses direct antimicrobial properties but also immunomodulatory effects against the bacterial pathogens Flavobacterium psychrophilum and Pseudomonas aeruginosa using in vitro and in vivo experiments. These previous results suggest PACAP can be used as an alternative to antibiotics to prevent and/or treat bacterial infections in the aquaculture industry. To accomplish this goal, more studies are needed to better understand the effect of PACAP on pathogens affecting fish in live infections. In the present study, the transcripts PACAP, PRP/PACAP, and VPAC2 receptor were examined in rainbow trout (Oncorhynchus mykiss) naturally infected with Yersinia ruckeri, which exhibited an increase in their expression in the spleen when compared to healthy fish. Synthetic Clarias gariepinus PACAP-38 has direct antimicrobial activity on Y. ruckeri and inhibits up to 60% of the bacterial growth when the peptide is at concentrations between 50 and 100 µM in TSB. The growth inhibition increased up to 90% in the presence of 12.5 µM of PACAP-38 when salt-free LB broth was used instead of TSB. It was also found to inhibit Y. ruckeri growth in a dose-dependent manner when the rainbow trout monocyte/macrophage-like cell line (RTS11) was pre-treated with lower concentrations of the peptide (0.02 and 0.1 µM) before going through infection. Differential gene expression was analyzed in this in vitro model. Overall, the results revealed new evidence to support the role of PACAP as an antimicrobial and immunomodulatory peptide treatment in teleosts.

5.
PLoS One ; 18(9): e0288006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37751460

RESUMEN

Despite that more than one hundred vaccines against SARS-CoV-2 have been developed and that some of them were evaluated in clinical trials, the latest results revealed that these vaccines still face great challenges. Among the components of the virus, the N-protein constitutes an attractive target for a subunit vaccine because it is the most abundant, highly conserved and immunogenic protein. In the present work, a chimeric protein (N-CD protein) was constructed by the fusion of the N-protein to the extracellular domain of human CD154 as the molecular adjuvant. HEK-293 cells were transduced with lentiviral vector bearing the N-CD gene and polyclonal cell populations were obtained. The N-CD protein was purified from cell culture supernatant and further characterized by several techniques. Immunogenicity studies in mice and non-human primates showed the N-CD protein induced high IgG titers in both models after two doses. Moreover, overall health monitoring of non-human primates demonstrated that animals were healthy during 228 days after first immunization. Data obtained support further investigation in order to develop this chimeric protein as vaccine candidate against COVID-19 and other coronavirus diseases.


Asunto(s)
COVID-19 , Vacunas , Humanos , Animales , Ratones , SARS-CoV-2/genética , COVID-19/prevención & control , Células HEK293 , Vacunas contra la COVID-19 , Nucleocápside , Ligando de CD40/genética , Proteínas Recombinantes de Fusión/genética
6.
Fish Shellfish Immunol Rep ; 4: 100093, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37122444

RESUMEN

Teleost IgT/Z plays a principal role in the defense mechanisms against infectious agents in the mucosal compartments and in systemic immunity. Previously, Nile tilapia (Oreochromis niloticus) IgT was discovered and characterized at transcription level. In this work, we generated a monoclonal antibody (mAb) that specifically recognized the Nile tilapia IgT. BALB/c mice were immunized with three synthetic peptides conjugated to KLH. The sequences of these peptides derived from the constant region of the Nile tilapia IgT heavy chain. ELISA and Western blotting confirmed the specificity of the polyclonal sera and the culture supernatant from a positive hybridoma clone. We observed immunoreactivity against a recombinant IgT fragment and native IgT in skin mucus. The anti-IgT mAb did not cross-react with purified tilapia IgM. Direct ELISA analysis allowed the quantification of skin mucus IgM and IgT concentrations. Flow cytometry analysis revealed differences in the percentage of IgT+ B cell populations between juveniles and adults in peripheral blood, head kidney and spleen lymphocytes and among the tissues analyzed. For further validation of the anti-IgT mAb utility, a recombinant vaccine candidate against sea lice (TT-P0 Ls) was injected into juvenile tilapia. Direct ELISA results revealed a differential secretion of skin mucus IgT and IgM after immunostimulation. In addition, the percentages of IgT+ B cells were determined at 7 days after booster and ex-vivo stimulation by flow cytometry. This mAb constitutes an important immunological tool to study the biological function and structural characteristics of tilapia IgT.

7.
Vaccines (Basel) ; 10(6)2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35746505

RESUMEN

COVID-19 is a respiratory viral disease caused by a new coronavirus called SARS-CoV-2. This disease has spread rapidly worldwide with a high rate of morbidity and mortality. The receptor-binding domain (RBD) of protein spike (S) mediates the attachment of the virus to the host's cellular receptor. The RBD domain constitutes a very attractive target for subunit vaccine development due to its ability to induce a neutralizing antibody response against the virus. With the aim of boosting the immunogenicity of RBD, it was fused to the extracellular domain of CD154, an immune system modulator molecule. To obtain the chimeric protein, stable transduction of HEK-293 was carried out with recombinant lentivirus and polyclonal populations and cell clones were obtained. RBD-CD was purified from culture supernatant and further characterized by several techniques. RBD-CD immunogenicity evaluated in mice and non-human primates (NHP) indicated that recombinant protein was able to induce a specific and high IgG response after two doses. NHP sera also neutralize SARS-CoV-2 infection of Vero E6 cells. RBD-CD could improve the current vaccines against COVID-19, based in the enhancement of the host humoral and cellular response. Further experiments are necessary to confirm the utility of RBD-CD as a prophylactic vaccine and/or booster purpose.

8.
Arch Virol ; 167(10): 2041-2047, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35761106

RESUMEN

Aquaculture constitutes an alternative source for food production and contributes to a reduction in the indiscriminate catching of aquatic organisms in their natural environment. However, high mortality during the larval state remains a challenge in this sector, mainly because of factors such as diet and diseases caused by pathogens. Therefore, growth and health management is a key strategy for sustainable aquaculture. Synthetic growth hormone secretagogues (GHSs) are a family of ligands that can stimulate pituitary growth hormone release as well as the function of ghrelin, contributing to the immune responses in a variety of vertebrates, including fish. The A233 decapeptide is a GHS with a demonstrated impact on growth, immune system function, and antioxidant defense in tilapia fish, but no antiviral activity has been described for this peptide. Here, using an in vitro model (TRG-2 cells) and two in vivo models (sea bream [Sparus aurata]) and zebrafish [Danio rerio]), we demonstrate for the first time the potential antiviral effect of A233 in teleost fish.


Asunto(s)
Ghrelina , Dorada , Animales , Ghrelina/farmacología , Hormona del Crecimiento/metabolismo , Secretagogos , Pez Cebra/metabolismo
9.
Vet Parasitol Reg Stud Reports ; 25: 100591, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34474784

RESUMEN

Rhipicephalus microplus (Canestrini, 1888) is one of the species with medical and economic relevance that has been reported in the list of Cuban tick species. Some morphological characterizations about the R. microplus species in Cuba have been published; however, molecular studies are lacking. Molecular phylogenetic analyses have grouped R. annulatus, R. australis and three clades of R. microplus in a complex named R. microplus. The present study aimed to characterize two R. microplus tick isolates, established as colonies at the Cuban National Laboratory of Parasitology. Morphological characterization of adult specimens was carried out by using Scanning Electron Microscopy. The sequences of mitochondrial genes: 12S rRNA, 16S rRNA and the subunit I of cytochrome c oxidase (coxI) and one nuclear sequence: internal transcribed spacer 2 (its2) were used for phylogenetic analyses. The life cycle under laboratory conditions for both isolates was also characterized. Tick specimens of both colonies showed morphological characteristics comparable with those distinctive for the R. microplus species. Phylogenies based on mitochondrial gene sequences identified congruently the Cuban tick colonies within the clade A of R. microplus. The life cycle of both isolates under laboratory conditions lasted 65 ± 5 days and the reproductive performance of female ticks of each colony also were similar with approximately 2500 larvae obtained from fully engorged female ticks. This study constitutes the first molecular characterization of ticks from the R. microplus species in Cuba.


Asunto(s)
Rhipicephalus , Infestaciones por Garrapatas , Animales , Complejo IV de Transporte de Electrones/genética , Femenino , Filogenia , ARN Ribosómico 16S/genética , Infestaciones por Garrapatas/parasitología , Infestaciones por Garrapatas/veterinaria
10.
Anal Bioanal Chem ; 413(23): 5885-5900, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34341841

RESUMEN

A peptide from the P0 acidic ribosomal protein (pP0) of ticks conjugated to keyhole limpet hemocyanin from Megathura crenulata has shown to be effective against different tick species when used in host vaccination. Turning this peptide into a commercial anti-tick vaccine will depend on finding the appropriate, technically and economically feasible way to present it to the host immune system. Two conjugates (p64K-Cys1pP0 and p64K-ßAla1pP0) were synthesized using the p64K carrier protein from Neisseria meningitidis produced in Escherichia coli, the same cross-linking reagent, and two analogues of pP0. The SDS-PAGE analysis of p64K-Cys1pP0 showed a heterogeneous conjugate compared to p64K-ßAla1pP0 that was detected as a protein band at 91kDa. The pP0/p64K ratio determined by MALDI-MS for p64K-Cys1pP0 ranged from 1 to 8, being 3-5 the predominant ratio, while in the case of p64K-ßAla1pP0 this ratio was 5-7. Cys1pP0 was partially linked to 35 out of 39 Lys residues and the N-terminal end, while ßAla1pP0 was mostly linked to the six free cysteine residues, to the N-terminal end, and, in a lesser extent, to Lys residues. The assignment of the conjugation sites and side reactions were based on the identification of type 2 peptides. Rabbit immunizations showed the best anti-pP0 titers and the highest efficacy against Rhipicephalus sanguineus ticks when the p64K-Cys1pP0 was used as vaccine antigen. The presence of high molecular mass aggregates observed in the SDS-PAGE analysis of p64K-Cys1pP0 could be responsible for a better immune response against pP0 and consequently for its better efficacy as an anti-tick vaccine. Graphical abstract.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/inmunología , Cromatografía Liquida/métodos , Neisseria meningitidis/inmunología , Espectrometría de Masas en Tándem/métodos , Garrapatas/inmunología , Vacunas/inmunología , Animales , Electroforesis en Gel de Poliacrilamida , Hemocianinas/inmunología , Conejos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
11.
Fish Shellfish Immunol ; 115: 150-159, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34146673

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide that belongs to the secretin/glucagon/GHRH/VIP superfamily. Some of these molecules have antimicrobial activity and they are capable of stimulating the immune system. The present work studied the antibacterial and immunostimulatory activity of PACAP-38 from African catfish Clarias gariepinus against the Gram-negative bacterium Pseudomonas aeruginosa in an in vivo test. PACAP-38 improved antimicrobial activity of skin mucus molecules against P. aeruginosa. The peptide modulates the gene expression profile of TLR-1, TLR-5, MyD88, IL-1ß, TNF-ɑ, IL-8, pardaxin, hepcidin and G/C-type lysozymes in skin, spleen and head kidney. The influenced exerted depended on the time after infection and tissue analyzed. This study provides the first evidence of a link between PACAP and antimicrobial peptides hepcidin and pardaxin. Our results suggest further use of PACAP as antimicrobial agent that could potentially be used to control disease in aquaculture.


Asunto(s)
Antiinfecciosos/inmunología , Bagres/genética , Bagres/inmunología , Proteínas de Peces/genética , Inmunidad Innata/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Transducción de Señal/genética , Animales , Proteínas de Peces/inmunología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 1/genética , Receptor Toll-Like 1/inmunología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/inmunología
12.
Ticks Tick Borne Dis ; 12(1): 101602, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33142143

RESUMEN

Amblyomma cajennense Fabricius, 1787 (Acari: Ixodidae) is a widely distributed tick taxon. Recent studies have reassessed this taxon as a complex of six species. Amblyomma mixtum Koch, 1844 has been suggested by some authors as the only species of this complex that is present in Cuba. Other authors have pointed a niche overlapping for A. mixtum and A. cajennense s.s. in the country. Detailed taxonomic studies on the Cuban species belonging to this complex are needed in order to evaluate their current distribution according to the recent classification. This study aimed to characterize Cuban populations from the A. cajennense complex by using tick samples obtained from 3 occidental provinces and 1 central province of the country. Morphological identification and measurements of the main relevant taxonomic structures were conducted by using Scanning Electron Microscopy. Phylogenetic analyzes were carried out with 16S ribosomal RNA, internal transcribed spacer 2 and the subunit I of mitochondrial cytochrome c oxidase gene sequences. The results of these studies demonstrated that all samples belonged to the species A. mixtum (Koch, 1844). This study constitutes the first molecular characterization of this Amblyomma species in Cuba. Further studies will be necessary in order to corroborate if A. cajennense s.s. is also present in the island.


Asunto(s)
Amblyomma/anatomía & histología , Amblyomma/genética , Distribución Animal , Amblyomma/crecimiento & desarrollo , Animales , Cuba , ADN Espaciador Ribosómico/análisis , Perros/parasitología , Complejo IV de Transporte de Electrones/análisis , Femenino , Caballos/parasitología , Larva/anatomía & histología , Larva/genética , Larva/crecimiento & desarrollo , Masculino , Ninfa/anatomía & histología , Ninfa/genética , Ninfa/crecimiento & desarrollo , Filogenia , ARN Ribosómico 16S/análisis , Oveja Doméstica/parasitología
13.
Fish Shellfish Immunol ; 110: 44-54, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33348037

RESUMEN

Nile tilapia (Oreochromis niloticus) is a freshwater fish, which is extensively cultivated worldwide and constitutes one of the model species for the study of fish immunology. Monoclonal antibodies are very advantageous molecular tools for studying teleost immune system. Specifically, monoclonal antibodies that react with immunoglobulins are used successfully in the study of the humoral immune response of several fish species. In the present study, we produced and characterized a monoclonal antibody against tilapia IgM heavy chain using a peptide-based strategy. The peptide sequence was selected from the surface-exposed region between CH3-CH4 domains. The specificity of the polyclonal serum and the hybridoma culture supernatant obtained by immunization with the peptide conjugated to keyhole limpet hemocyanin were evaluated by western blotting, both showing reactivity against tilapia serum IgM. The purified mAb was able to recognize secreted IgM by western blotting and ELISA and membrane IgM by flow cytometry. We also demonstrated that the antibody doesn't cross-react with a recombinant IgT fragment. This tool allowed us to study for the first time the stimulation of mucosal immunity after Pituitary Adenylate Cyclase Activating Polypeptide administration. Overall, the results demonstrated the utility of this mAb to characterize humoral immune response in O. niloticus.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Cíclidos/inmunología , Proteínas de Peces/inmunología , Inmunidad Humoral , Cadenas Pesadas de Inmunoglobulina/inmunología , Inmunoglobulina M/inmunología , Secuencia de Aminoácidos , Animales , Alineación de Secuencia
14.
PLoS One ; 15(10): e0239827, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33006991

RESUMEN

Infection with parasitic copepod salmon louse Lepeophtheirus salmonis, represents one of the most important limitations to sustainable Atlantic salmon (Salmo salar L.) farming today in the North Atlantic region. The parasite exerts negative impact on health, growth and welfare of farmed fish as well as impact on wild salmonid populations. It is therefore central to ensure continuous low level of salmon lice with the least possible handling of the salmon and drug use. To address this, vaccination is a cost-effective and environmentally friendly control approach. In this study, efficacy of a vaccine candidate, containing a peptide derived from ribosomal protein P0, was validated post infestation with L. salmonis, at the lab-scale. The sampling results showed good potential of the vaccine candidate when administered intraperitoneally in the host, in reducing the ectoparasite load, through reduction of adult female lice counts and fecundity and with greater presumptive effect in F1 lice generation. The sampling results correlated well with the differential modulation of pro-inflammatory, Th1, Th2 and T regulatory mediators at the transcript level at different lice stages. Overall, the results supports approximately 56% efficacy when administered by intraperitoneal injection. However, additional validation is necessary under large-scale laboratory trial for further application under field conditions.


Asunto(s)
Copépodos/inmunología , Enfermedades de los Peces/prevención & control , Proteínas Ribosómicas/inmunología , Salmo salar/inmunología , Vacunas/uso terapéutico , Animales , Enfermedades de los Peces/parasitología , Interacciones Huésped-Parásitos , Vacunación/veterinaria
15.
Pathogens ; 9(6)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630414

RESUMEN

A synthetic 20 amino acid peptide of the ribosomal protein P0 from ticks, when conjugated to keyhole limpet hemocyanin from Megathura crenulata and used as an immunogen against Rhipicephalus microplus and Rhipicephalus sanguineus s.l. species, has shown efficacies of around 90%. There is also experimental evidence of a high efficacy of this conjugate against Amblyomma mixtum and Ixodes ricinus species, which suggest that this antigen could be a good broad-spectrum anti-tick vaccine candidate. In this study, the P0 peptide (pP0) was chemically conjugated to Bm86 as a carrier protein. SDS-PAGE analysis of this conjugate demonstrated that it is highly heterogeneous in size, carrying from 1 to 18 molecules of pP0 per molecule of Bm86. Forty-nine out of the 54 lysine residues and the N-terminal end of Bm86 were found partially linked to pP0 by using LC-MS/MS analysis and the combination of four different softwares. Several post-translational modifications of Bm86 protein were also identified by mass spectrometry. High immunogenicity and efficacy were achieved when dogs and cattle were vaccinated with the pP0-Bm86 conjugate and challenged with R. sanguineus s.l. and R. microplus, respectively. These results encourage the development of this antigen with promising possibilities as an anti-tick vaccine.

16.
Fish Shellfish Immunol ; 103: 58-65, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32334130

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide belonging to the glucagon/secretin superfamily. In teleost fish, PACAP has been demonstrated to have an immunomodulatory role. Although previous studies have shown that viral/bacterial infections can influence the transcription of PACAP splicing variants and associated receptors in salmonids, the antiviral activity of PACAP has never been studied in teleost. Thus, in the present work, we investigated in vitro the influence of synthetic Clarias gariepinus PACAP-38 on the transcription of genes related to viral immunity using the rainbow trout monocyte/macrophage-like cell line RTS11 as a model. Positive transcriptional modulation of interferon gamma (IFNγ), interferon alpha (FNα1,2), interleukin 8 (IL-8), Mx and Toll-like receptor 3 (TLR3) genes was found in a dose and time dependent manner. We also explored how a pre-treatment with PACAP could enhance antiviral immune response using poly (I:C) as viral mimic. Interferons and IL-8 transcription levels were enhanced when PACAP was added 24 h previous to poly (I:C) exposure. With these evidences, we tested in vivo how PACAP administration by immersion bath affected the survival of rainbow trout fry to a challenge with viral hemorrhagic septicemia virus (VHSV). After challenge, PACAP-treated fish had increased survival compared to non-treated/challenge fish. Furthermore, PACAP was able to decrease the viral load in spleen/kidney and stimulate the transcription of IFNs and Mx when compared to untreated infected fish. Altogether, the results of this work provide valuable insights regarding the role of teleost PACAP in antiviral immunity and point to a potential application of this peptide to reduce the impact of viral infections in aquaculture.


Asunto(s)
Antivirales/inmunología , Bagres/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Inmunidad Innata , Oncorhynchus mykiss , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Animales , Proteínas de Peces/inmunología , Novirhabdovirus/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/inmunología , Poli I-C/farmacología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/veterinaria
17.
Fish Shellfish Immunol ; 92: 322-330, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31200071

RESUMEN

The development of vaccines employing conserved protein antigens, for instance ribosomal protein P0, has as disadvantage the high degree of identity between pathogen and host proteins due to possible induction of tolerance or auto antibodies in the host organism. To overcome this drawback, peptide-based vaccines have been designed with a proved high efficacy. The use of defined peptides as antigens has the problem that they are generally poor immunogenic unless coupled to a carrier protein. Several studies have established the potential for promiscuous T cell epitopes incorporated into chimeric peptides to enhance the immunogenicity in mammals. On the contrary, studies about the role of these epitopes on teleost immune system are scarce. Therefore, the main objective of our present study was to evaluate the potential of promiscuous T cell epitopes to boost specific IgM immune response in teleost fish against a peptide antigen. With this aim, we used a peptide of 35 amino acids from the ribosomal P0 protein of Lepeophtheirus salmonis, an important parasite in salmon aquaculture. We fused this peptide to the C-terminal of T cell epitopes from tetanus toxin and measles virus and produced the chimeric protein in Escherichia coli. Following vaccination, IgM antibody production was monitored in different immunization schemes in Tilapia, African catfish and Atlantic salmon. The results demonstrated for first time that the addition of T cell epitopes at the N-terminal of a target peptide increased IgM specific response in different teleost species, revealing the potential of this approach to develop peptide-based vaccines for aquaculture. The results are also of great importance in the context of vaccine development against sea lice using ribosomal protein P0 as antigen taking into account the key role of P0 in protein synthesis and other essential physiological processes.


Asunto(s)
Copépodos/inmunología , Infestaciones Ectoparasitarias/veterinaria , Epítopos de Linfocito T/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Innata/efectos de los fármacos , Inmunoglobulina M/inmunología , Animales , Proteínas de Artrópodos/inmunología , Bagres/inmunología , Cíclidos/inmunología , Infestaciones Ectoparasitarias/inmunología , Péptidos/inmunología , Proteínas Ribosómicas/inmunología , Salmo salar/inmunología , Vacunas de Subunidad/inmunología
18.
Fish Shellfish Immunol ; 86: 559-570, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30481557

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide that belongs to the secretin/glucagon superfamily, of which some members have shown antimicrobial activities. Contrasting to mammals, published studies on the action of PACAP in non-mammalian vertebrate immune system remain scarce. Some of our recent studies added this peptide to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in teleost fish. Regulation of PACAP and expression of its receptor genes has been demonstrated during an immune response mounted against acute bacterial infection in fish, though the direct effect of PACAP against fish pathogenic bacteria has never been addressed. Current work provides evidence of antimicrobial activity of Clarias gariepinus PACAP against a wide spectrum of Gram-negative and Gram-positive bacteria and fungi of interest for human medicine and aquaculture, in which computational prediction studies supported the putative PACAP therapeutic activity. Results also indicated that catfish PACAP not only exhibits inhibitory effects on pathogen growth, but also affects the proliferation of human non-small cell lung cancer cell line H460 in a dose-dependent manner. The observed cytotoxic activity of catfish PACAP against human tumor cells and pathogenic microorganisms, but not healthy fish and mammalian erythrocytes support a potential physiological role of this neuropeptide in selective microbial and cancer cell killing. All together, our findings extend the mechanisms by which PACAP could contribute to immune responses, and open up new avenues for future therapeutic application of this bioactive neuropeptide.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Bagres/inmunología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Aeromonas hydrophila/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Bacterias/patogenicidad , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Bagres/microbiología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Péptidos de Penetración Celular/farmacología , Eritrocitos/efectos de los fármacos , Hemólisis , Humanos , Neoplasias Pulmonares/tratamiento farmacológico
19.
Dev Comp Immunol ; 88: 124-136, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30012536

RESUMEN

Immunoglobulin molecules play an important role in the immune defense system in all jawed vertebrates, by protecting the organism from a wide variety of pathogens. Nile tilapia (Oreochromis niloticus) is extensively cultivated worldwide, with a strong established market demand. It constitutes one of the model species for the study of fish immunology and its genome is currently fully sequenced. The presence of the immunoglobulin M gene in this species is well documented, as well as its major role in systemic immunity. To date, the IgT gene from O. niloticus has not been identified and, therefore, no information is available on the role of this immunoglobulin isotype in the immune response in tilapia. In the present work, novel secreted and membrane immunoglobulin T isotypes and a fragment of IgM were isolated from tilapia head kidney lymphocytes. Their transcriptional profiles were analyzed by quantitative PCR in larval development and in different tissues of healthy or lipopolysaccharide/Edwardsiella tarda-challenged tilapia adults. The presence of IgT and IgM were detected in early stages of larval development. Additionally, these genes exhibited differential expression profiles in basal conditions and after E. tarda infection in adult tilapia, in accord with the proposed effector functions of these immunoglobulins in the systemic and mucosal compartments. Our results suggest the potential involvement of this new Ig in mucosal immunity in tilapia.


Asunto(s)
Cíclidos/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Inmunidad Mucosa , Inmunoglobulinas/inmunología , Animales , Biomarcadores , Edwardsiella tarda/inmunología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/virología , Enfermedades de los Peces/microbiología , Proteínas de Peces/genética , Proteínas de Peces/aislamiento & purificación , Perfilación de la Expresión Génica , Riñón Cefálico/citología , Inmunoglobulinas/genética , Inmunoglobulinas/aislamiento & purificación , Larva/inmunología , Lipopolisacáridos/inmunología , Linfocitos/metabolismo , Filogenia
20.
Lipids ; 53(4): 429-436, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29655176

RESUMEN

Growth hormone (GH) release is a process that is well regulated by several factors, including GH secretagogues. GH can mediate the regulation of the fatty acid level and composition. The aim of this study was to determine the effect of a synthetic GH secretagogue peptide (A233) on the growth and fatty acid composition in tilapia (Oreochromis niloticus). To address this objective, we administrated a diet supplemented with A233 to juvenile tilapia for 60 days. The group fed with a diet supplemented with 600 µg of A233 per kg of feed increased in weight (4.81 ± 0.09 g) and specific growth rate (2.49 ± 0.03%/day) compared to the control diet group (3.63 ± 0.08 g, 2.07 ± 0.04%/day; respectively) (p < 0.001). In the muscle, the total lipids for the control diet group were higher than that in the group fed with 600 µg of A233 per kg feed; however, no differences were detected in the liver. In both tissues, the patterns of fatty acid composition and content were generally similar, with some exceptions. Tilapia fed with 600 µg of A233 per kg of feed showed, in liver and muscle, a significantly higher composition and content of n-3 polyunsaturated fatty acids (such as 20:5n-3, 22:5n-3, 22:6n-3) and n-3/n-6 PUFA than animals fed with the control diet. To our knowledge, this is the first report on the the effects of natural or synthetic GH secretagogues (GHS) on fatty acid composition, implying an increase in the nutritional quality of the tilapia.


Asunto(s)
Cíclidos/crecimiento & desarrollo , Cíclidos/metabolismo , Ácidos Grasos Omega-3/metabolismo , Hígado/efectos de los fármacos , Músculos/efectos de los fármacos , Hormonas Peptídicas/farmacología , Secretagogos/farmacología , Animales , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Hígado/metabolismo , Músculos/metabolismo , Hormonas Peptídicas/administración & dosificación , Hormonas Peptídicas/química , Secretagogos/administración & dosificación , Secretagogos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...