Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 14(6): 846-852, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37312862

RESUMEN

We herein report an enantioselective bioreduction of ketones that bear the most frequently used nitrogen-heteroaromatics in FDA-approved drugs. Ten varieties of these nitrogen-containing heterocycles were systematically investigated. Eight categories were studied for the first time and seven types were tolerated, significantly expanding the substrate scope of plant-mediated reduction. By use of purple carrots in buffered aqueous media with a simplified reaction setup, this biocatalytic transformation was achieved within 48 h at ambient temperature, offering medicinal chemists a pragmatic and scalable tool to access a broad variety of nitrogen-heteroaryl-containing chiral alcohols. With multiple reactive sites, the structurally diverse set of chiral alcohols can be used for library compound preparation, early route-scouting activities, and synthesis of other pharmaceutical molecules, favorably accelerating medicinal chemistry campaigns.

2.
Gastroenterology ; 159(3): 1068-1084.e2, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32505743

RESUMEN

BACKGROUND & AIMS: Extrahepatic biliary atresia (BA) is a pediatric liver disease with no approved medical therapy. Recent studies using human samples and experimental modeling suggest that glutathione redox metabolism and heterogeneity play a role in disease pathogenesis. We sought to dissect the mechanistic basis of liver redox variation and explore how other stress responses affect cholangiocyte injury in BA. METHODS: We performed quantitative in situ hepatic glutathione redox mapping in zebrafish larvae carrying targeted mutations in glutathione metabolism genes and correlated these findings with sensitivity to the plant-derived BA-linked toxin biliatresone. We also determined whether genetic disruption of HSP90 protein quality control pathway genes implicated in human BA altered biliatresone toxicity in zebrafish and human cholangiocytes. An in vivo screening of a known drug library was performed to identify novel modifiers of cholangiocyte injury in the zebrafish experimental BA model, with subsequent validation. RESULTS: Glutathione metabolism gene mutations caused regionally distinct changes in the redox potential of cholangiocytes that differentially sensitized them to biliatresone. Disruption of human BA-implicated HSP90 pathway genes sensitized zebrafish and human cholangiocytes to biliatresone-induced injury independent of glutathione. Phosphodiesterase-5 inhibitors and other cyclic guanosine monophosphate signaling activators worked synergistically with the glutathione precursor N-acetylcysteine in preventing biliatresone-induced injury in zebrafish and human cholangiocytes. Phosphodiesterase-5 inhibitors enhanced proteasomal degradation and required intact HSP90 chaperone. CONCLUSION: Regional variation in glutathione metabolism underlies sensitivity to the biliary toxin biliatresone and may account for the reported association between BA transplant-free survival and glutathione metabolism gene expression. Human BA can be causatively linked to genetic modulation of protein quality control. Combined treatment with N-acetylcysteine and cyclic guanosine monophosphate signaling enhancers warrants further investigation as therapy for BA.


Asunto(s)
Conductos Biliares/patología , Atresia Biliar/tratamiento farmacológico , Depuradores de Radicales Libres/farmacología , Oxidación-Reducción/efectos de los fármacos , Proteostasis/efectos de los fármacos , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Animales , Animales Modificados Genéticamente , Benzodioxoles/toxicidad , Conductos Biliares/citología , Conductos Biliares/efectos de los fármacos , Atresia Biliar/inducido químicamente , Atresia Biliar/genética , Atresia Biliar/patología , Línea Celular , GMP Cíclico/agonistas , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Depuradores de Radicales Libres/uso terapéutico , Glutatión/metabolismo , Humanos , Proteostasis/genética , Transducción de Señal/efectos de los fármacos , Pez Cebra
3.
J Steroid Biochem Mol Biol ; 192: 105283, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30641225

RESUMEN

Drugs used for the treatment of castration resistant prostate cancer (CRPC) include Abiraterone acetate (Zytiga®) and Enzalutamide (XTANDI®). However, these drugs provide clinical benefit in metastatic disease for only a brief period before drug resistance emerges. One mechanism of drug resistance involves the overexpression of type 5 17-ß-hydroxysteroid dehydrogenase (aldo-keto reductase 1C3 or AKR1C3), a major enzyme responsible for the formation of intratumoral androgens that activate the androgen receptor (AR). 3-((4-Nitronaphthalen-1-yl)amino)benzoic acid 1 is a "first-in-class" AKR1C3 competitive inhibitor and AR antagonist. Compound 1 was compared in a battery of in vitro studies with structurally related N-naphthyl-aminobenzoates, and AKR1C3 targeted therapeutics e.g. GTx-560 and ASP9521, as well as with R-bicalutamide, enzalutamide and abiraterone acetate. Compound 1 was the only naphthyl derivative that was a selective AKR1C3 inhibitor and AR antagonist in direct competitive binding assays and in AR driven reporter gene assays. GTx-560 displayed weak activity as a direct AR antagonist but had high potency in the AR reporter gene assay consistent with its ability to inhibit the co-activator function of AKR1C3. By contrast ASP9521 did not act as either an AR antagonist or block AR reporter gene activity. Compound 1 was the only compound that showed comparable potency to inhibit AKR1C3 and act as a direct AR antagonist. Compound 1 blocked the formation of testosterone in LNCaP-AKR1C3 cells, and the expression of PSA driven by the AKR1C3 substrate (4-androstene-3,17-dione) and by an AR agonist, 5α-dihydrotestosterone consistent with its bifunctional role. Compound 1 blocked the nuclear translocation of the AR at similar concentrations to enzalutamide and caused disappearance of the AR from cell lysates. R-biaclutamide and enzalutamide inhibited AKR1C3 at concentrations 200x greater than compound 1, suggesting that its bifunctionality can be explained by a shared pharmacophore that can be optimized.


Asunto(s)
Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/antagonistas & inhibidores , Antagonistas de Receptores Androgénicos/farmacología , Benzoatos/farmacología , Inhibidores Enzimáticos/farmacología , Naftalenos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/química , Antagonistas de Receptores Androgénicos/química , Apoptosis , Benzoatos/química , Proliferación Celular , Inhibidores Enzimáticos/química , Humanos , Masculino , Naftalenos/química , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Neoplasias de la Próstata Resistentes a la Castración/patología , Células Tumorales Cultivadas
4.
J Med Chem ; 61(11): 5034-5046, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29727562

RESUMEN

BRAFV600E is the most common activating mutation in melanoma and patients treated with BRAFV600E inhibitors all develop resistance within one year. A significant resistance pathway is paradoxical activation (transactivation) involving BRAF dimers, whereby an inhibitor bound protein subunit allosterically activates the other subunit. We recently reported on dimeric BRAFV600E -selective vemurafenib inhibitors that stabilize an inactive αC-out/αC-out homodimeric conformation with improved inhibitor potency and selectivity in vitro. We set out to extend this strategy to target RAF homo- and heterodimers with the pan-RAF inhibitor TAK632 in dimeric configuration. Surprisingly, we find that monomeric TAK632 induces an active αC-in/αC-in BRAF dimer conformation, while dimeric TAK inhibitors cannot promote BRAF dimers and have significantly compromised potency in vitro. These studies uncover the intimate connection between BRAF dimerization and TAK632 mode of inhibition and highlight the importance of understanding the impact of BRAF inhibitors on kinase dimerization.


Asunto(s)
Benzotiazoles/química , Benzotiazoles/farmacología , Nitrilos/química , Nitrilos/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/química , Línea Celular Tumoral , Dimerización , Diseño de Fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Moleculares , Estructura Cuaternaria de Proteína
5.
ACS Med Chem Lett ; 9(1): 61-64, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29348813

RESUMEN

We report the first synthesis of the plant isoflavonoid biliatresone. The convergent synthesis has been applied to the synthesis of several analogs, which have facilitated the first structure-activity relationship study for this environmental toxin that, on ingestion, recapitulates the phenotype of biliary atresia.

6.
ACS Chem Biol ; 11(10): 2876-2888, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27571413

RESUMEN

The BRAF kinase, within the mitogen activated protein kinase (MAPK) signaling pathway, harbors activating mutations in about half of melanomas and to a significant extent in many other cancers. A single valine to glutamic acid substitution at residue 600 (BRAFV600E) accounts for about 90% of these activating mutations. While BRAFV600E-selective small molecule inhibitors, such as debrafenib and vemurafenib, have shown therapeutic benefit, almost all patients develop resistance. Resistance often arises through reactivation of the MAPK pathway, typically through mutation of upstream RAS, downstream MEK, or splicing variants. RAF kinases signal as homo- and heterodimers, and another complication associated with small molecule BRAFV600E inhibition is drug-induced allosteric activation of a wild-type RAF subunit (BRAF or CRAF) of the kinase dimer, a process called "transactivation" or "paradoxical activation." Here, we used BRAFV600E and vemurafenib as a model system to develop chemically linked kinase inhibitors to lock RAF dimers in an inactive conformation that cannot undergo transactivation. This structure-based design effort resulted in the development of Vem-BisAmide-2, a compound containing two vemurafenib molecules connected by a bis amide linker. We show that Vem-BisAmide-2 has comparable inhibitory potency as vemurafenib to BRAFV600E both in vitro and in cells but promotes an inactive dimeric BRAFV600E conformation unable to undergo transactivation. The crystal structure of a BRAFV600E/Vem-BisAmide-2 complex and associated biochemical studies reveal the molecular basis for how Vem-BisAmide-2 mediates selectivity for an inactive over an active dimeric BRAFV600E conformation. These studies have implications for targeting BRAFV600E/RAF heterodimers and other kinase dimers for therapy.


Asunto(s)
Indoles/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Dimerización , Ensayo de Inmunoadsorción Enzimática , Humanos , Indoles/química , Melanoma/patología , Estructura Molecular , Conformación Proteica , Proteínas Proto-Oncogénicas B-raf/química , Soluciones , Sulfonamidas/química , Vemurafenib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...