Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 32(8): 1310-8, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20846324

RESUMEN

Within the hippocampus and neocortex, GABA is considered to be excitatory in early development due to a relatively depolarized Cl(-) reversal potential (E(Cl)). Although the depolarizing nature of synaptic GABAergic events has been well established, it is unknown whether cortical tonic currents mediated by extrasynaptically located GABA(A) receptors (GABA(A) Rs) are also excitatory. Here we examined the development of tonic currents in the neocortex and their effect on neuronal excitability. Mean tonic current, recorded from layer 5 (L5) pyramidal cells of the mouse somatosensory cortex, is robust in newborns [postnatal day (P)2-4] then decreases dramatically by the second postnatal week (P7-10 and P30-40). Pharmacological studies, in combination with Western blot analysis, show that neonatal tonic currents are partially mediated by the GABA(A) R α5 subunit, and probably the δ subunit. In newborns, the charge due to tonic current accounts for nearly 100% of the total GABA charge, a contribution that decreases to < 50% in mature tissue. Current clamp recordings show that tonic current contributes to large fluctuations in the membrane potential that may disrupt its stability. Bath application of 5 µM GABA, to induce tonic currents, markedly decreased cell firing frequency in most recorded cells while increasing it in others. Gramicidin perforated patch recordings show heterogeneity in E(Cl) recorded from P2-5 L5 pyramidal cells. Together, these findings demonstrate that tonic currents activated by low GABA concentrations can dominate GABAergic transmission in newborn neocortical pyramidal cells and that tonic currents can exert heterogeneous effects on neuronal excitability.


Asunto(s)
Potenciales de Acción/fisiología , Neocórtex/fisiología , Inhibición Neural/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Ácido gamma-Aminobutírico/fisiología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Animales Recién Nacidos , Western Blotting , Femenino , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Neocórtex/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/farmacología
2.
J Neurosci ; 30(15): 5334-45, 2010 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-20392955

RESUMEN

Dlx5 and Dlx6 homeobox genes are expressed in developing and mature cortical interneurons. Simultaneous deletion of Dlx5 and 6 results in exencephaly of the anterior brain; despite this defect, prenatal basal ganglia differentiation appeared largely intact, while tangential migration of Lhx6(+) and Mafb(+) interneurons to the cortex was reduced and disordered. The migration deficits were associated with reduced CXCR4 expression. Transplantation of mutant immature interneurons into a wild-type brain demonstrated that loss of either Dlx5 or Dlx5&6 preferentially reduced the number of mature parvalbumin(+) interneurons; those parvalbumin(+) interneurons that were present had increased dendritic branching. Dlx5/6(+/-) mice, which appear normal histologically, show spontaneous electrographic seizures and reduced power of gamma oscillations. Thus, Dlx5&6 appeared to be required for development and function of somal innervating (parvalbumin(+)) neocortical interneurons. This contrasts with Dlx1, whose function is required for dendrite innervating (calretinin(+), somatostatin(+), and neuropeptide Y(+)) interneurons (Cobos et al., 2005).


Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiología , Proteínas de Homeodominio/metabolismo , Interneuronas/fisiología , Parvalbúminas/metabolismo , Animales , Ganglios Basales/crecimiento & desarrollo , Ganglios Basales/fisiología , Ganglios Basales/fisiopatología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Células Cultivadas , Corteza Cerebral/fisiopatología , Dendritas/patología , Dendritas/fisiología , Proteínas de Homeodominio/genética , Interneuronas/citología , Interneuronas/patología , Proteínas con Homeodominio LIM , Factor de Transcripción MafB/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Periodicidad , Receptores CXCR4/metabolismo , Convulsiones/patología , Convulsiones/fisiopatología , Telencéfalo/crecimiento & desarrollo , Telencéfalo/fisiología , Telencéfalo/fisiopatología , Factores de Transcripción
3.
Ann Neurol ; 66(5): 644-53, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19938147

RESUMEN

OBJECTIVE: In humans, abnormal neuronal migration and severe neuronal disorganization resulting from Lis1 (lissencephaly) haploinsufficiency contributes to cognitive impairment and seizures early in life. In Lis1 heterozygotic mice, severe hippocampal disorganization and cognitive impairment have also been reported. Using this mouse model, we examined the functional impact of LIS1 deficiency with particular focus on excitatory glutamate-mediated synaptic transmission. METHODS: We used visualized patch-clamp recordings in acute hippocampal slices. We recorded spontaneous, miniature and stimulation-evoked excitatory postsynaptic current (EPSC). Additional mice were processed for immunohistochemistry, electron microscopy (EM), or video-electroencephalographic (EEG) monitoring. RESULTS: Video-EEG confirmed the presence of spontaneous electrographic seizures in Lis1 mutant mice. In disorganized hippocampal slices from Lis1(+/-) mice, we noted a nearly two-fold significant increase in the frequency of spontaneous and miniature EPSC; no significant change in amplitude or decay was noted. Synaptic function assessed using brief repetitive or paired-pulse stimulation protocols, also revealed significant enhancement of glutamate-mediated excitation. Low concentrations of cadmium, a nonspecific blocker of voltage-dependent calcium channels mediating vesicle release, effectively restored paired-pulse facilitation deficits back to control levels. Analysis of synapse ultrastructure at the EM level identified a large increase in synaptic vesicle number. INTERPRETATION: Seizure activity, possibly associated with increased glutamate-mediated excitation and an increased pool of vesicles at the presynaptic site, was demonstrated in a mouse model of type I lissencephaly.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Potenciales Postsinápticos Excitadores/fisiología , Proteínas Asociadas a Microtúbulos/genética , Convulsiones/genética , Vesículas Sinápticas/genética , Animales , Recuento de Células/métodos , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Femenino , Masculino , Ratones , Ratones Mutantes Neurológicos , Convulsiones/fisiopatología , Vesículas Sinápticas/patología
4.
Proc Natl Acad Sci U S A ; 106(36): 15472-7, 2009 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-19706400

RESUMEN

Epilepsy, a disease characterized by abnormal brain activity, is a disabling and potentially life-threatening condition for nearly 1% of the world population. Unfortunately, modulation of brain excitability using available antiepileptic drugs can have serious side effects, especially in the developing brain, and some patients can only be improved by surgical removal of brain regions containing the seizure focus. Here, we show that bilateral transplantation of precursor cells from the embryonic medial ganglionic eminence (MGE) into early postnatal neocortex generates mature GABAergic interneurons in the host brain. In mice receiving MGE cell grafts, GABA-mediated synaptic and extrasynaptic inhibition onto host brain pyramidal neurons is significantly increased. Bilateral MGE cell grafts in epileptic mice lacking a Shaker-like potassium channel (a gene mutated in one form of human epilepsy) resulted in significant reductions in the duration and frequency of spontaneous electrographic seizures. Our findings suggest that MGE-derived interneurons could be used to ameliorate abnormal excitability and possibly act as an effective strategy in the treatment of epilepsy.


Asunto(s)
Epilepsia/cirugía , Interneuronas/citología , Canal de Potasio Kv.1.1/genética , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Electroencefalografía , Electrofisiología , Epilepsia/prevención & control , Inmunohistoquímica , Interneuronas/trasplante , Ratones , Ratones Mutantes , Microscopía Electrónica
5.
J Neurosci ; 26(28): 7380-9, 2006 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-16837585

RESUMEN

Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.


Asunto(s)
Encéfalo/fisiología , Eminencia Media/citología , Neuronas/citología , Trasplante de Células Madre , Potenciales de Acción , Animales , Animales Recién Nacidos , Encéfalo/citología , Diferenciación Celular , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Embrión de Mamíferos/citología , Proteínas Fluorescentes Verdes/biosíntesis , Técnicas In Vitro , Interneuronas/fisiología , Cinética , Ratones , Ratones Transgénicos , Inhibición Neural , Neuronas/fisiología , Técnicas de Placa-Clamp , Fenotipo , Sinapsis/fisiología , Ácido gamma-Aminobutírico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA