Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Meas Sci Au ; 3(5): 355-360, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37868361

RESUMEN

Due to the increasing demand for clinical testing of infectious diseases at the point-of-care, the global market claims alternatives for rapid diagnosis tools such as disposable biosensors, avoiding the need for specialized laboratories and skilled personnel. Bacterial vaginosis (BV) is an infectious disease that commonly affects reproductive-age women and predisposes the infection of sexually transmitted diseases. Especially in asymptomatic cases, BV can lead to pelvic inflammatory conditions, postpartum endometritis, and preterm labor. Conventionally, BV diagnosis involves the microscopic analysis of vaginal swab samples; it thus requires highly trained personnel. In response, we report a novel microfluidic paper-based analytical device for BV diagnosis. Sialidase, a biomarker overexpressed in BV, was detected by exploiting an immunosensing mechanism previously discovered by our team. This technology employs a graphene oxide-coated surface as a quencher of fluorescence; the fluorescence of the immunoprobes that do not experiment immunoreactions (antibody-antigen) are deactivated by graphene oxide via non-radiative energy transfer, whereas those immunoprobes undergoing immunoreactions preserve their photoluminescence due to the distance and the low affinity between the immunocomplex and the graphene oxide-coated surface. Our paper-based test was typically carried out within 20 min, and the sample volume was 6 µL. Besides, it was tested with 14 vaginal swabs specimens to discriminate clinical samples of women with normal microbiota from those with BV. Our disposable device represents a new tool to prevent the consequences of BV.

2.
ACS Pharmacol Transl Sci ; 4(1): 365-371, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33615186

RESUMEN

Bacterial vaginosis (BV) affects reproductive-age women and can lead to pelvic inflammatory disease, postpartum endometritis, and preterm labor/delivery and predisposes the infection of sexually transmitted diseases. Typically, BV diagnosis involves the analysis of vaginal swab samples via microscopy operated by highly skilled personnel. Hence, novel approaches for BV diagnosis are an existing need. In response, the first immunosensing platform targeting sialidase, a BV biomarker, is reported. The nanophotonic operational principle of this biosensing platform allows for a cheaper, faster, and simpler analysis when compared with an indirect enzyme-linked immunosorbent assay (ELISA). The clinical evaluation of such a nanotechnology is highlighted, where 162 vaginal swab samples were analyzed with high sensitivity and specificity (96.29%, respectively). The resulting nanoimmunosensing platform offers a resourceful approach to perform a timely BV diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...