Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38083599

RESUMEN

Fixed sample entropy (fSampEn) is a technique that has demonstrated superior performance to other amplitude estimators for assessing respiratory muscle electromyographic activity. This technique is based on the calculation of sample entropy (SampEn) using fixed tolerance thresholds. Fuzzy entropy (FuzzyEn) introduces an improvement to the SampEn algorithm based on the use of a fuzzy measure to evaluate the similarity between vectors. However, several fuzzy functions have been used to calculate the FuzzyEn, and not all of them allow an effective comparison with the SampEn calculation parameters. In the present work, an analysis of the different fuzzy functions previously used has been carried out and a new sigmoid fuzzy function for the calculation of FuzzyEn with fixed tolerance thresholds (fFuzzyEn) has been proposed. The results show that the proposed fuzzy function outperformed both fSampEn and previously proposed FuzzyEn-based algorithms. These results suggest that fFuzzyEn could improve the assessment of muscle activity providing potentially useful diagnostic information.Clinical Relevance- This sets out the appropriate use of the fuzzy function for the estimation of the fuzzy sample entropy with fixed tolerance thresholds (fFuzzyEn). The use of fFuzzyEn could improve methods for detecting the onset and offset of respiratory electromyographic (EMG) signals, as well as the assessment of EMG activation level.


Asunto(s)
Fenómenos Fisiológicos Musculoesqueléticos , Músculos Respiratorios , Entropía , Algoritmos
2.
ERJ Open Res ; 9(3)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37131524

RESUMEN

Background: Acute respiratory syndrome due to coronavirus 2 (SARS-CoV-2) is characterised by heterogeneous levels of disease severity. It is not necessarily apparent whether a patient will develop severe disease or not. This cross-sectional study explores whether acoustic properties of the cough sound of patients with coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV-2, correlate with their disease and pneumonia severity, with the aim of identifying patients with severe disease. Methods: Voluntary cough sounds were recorded using a smartphone in 70 COVID-19 patients within the first 24 h of their hospital arrival, between April 2020 and May 2021. Based on gas exchange abnormalities, patients were classified as mild, moderate or severe. Time- and frequency-based variables were obtained from each cough effort and analysed using a linear mixed-effects modelling approach. Results: Records from 62 patients (37% female) were eligible for inclusion in the analysis, with mild, moderate and severe groups consisting of 31, 14 and 17 patients respectively. Five of the parameters examined were found to be significantly different in the cough of patients at different disease levels of severity, with a further two parameters found to be affected differently by the disease severity in men and women. Conclusions: We suggest that all these differences reflect the progressive pathophysiological alterations occurring in the respiratory system of COVID-19 patients, and potentially would provide an easy and cost-effective way to initially stratify patients, identifying those with more severe disease, and thereby most effectively allocate healthcare resources.

3.
IEEE J Biomed Health Inform ; 26(7): 3385-3396, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35404825

RESUMEN

This study explored the use of parasternal second intercostal space and lower intercostal space surface electromyogram (sEMG) and surface mechanomyogram (sMMG) recordings (sEMGpara and sMMGpara, and sEMGlic and sMMGlic, respectively) to assess neural respiratory drive (NRD), neuromechanical (NMC) and neuroventilatory (NVC) coupling, and mechanical efficiency (MEff) noninvasively in healthy subjects and chronic obstructive pulmonary disease (COPD) patients. sEMGpara, sMMGpara, sEMGlic, sMMGlic, mouth pressure (Pmo), and volume (Vi) were measured at rest, and during an inspiratory loading protocol, in 16 COPD patients (8 moderate and 8 severe) and 9 healthy subjects. Myographic signals were analyzed using fixed sample entropy and normalized to their largest values (fSEsEMGpara%max, fSEsMMGpara%max, fSEsEMGlic%max, and fSEsMMGlic%max). fSEsMMGpara%max, fSEsEMGpara%max, and fSEsEMGlic%max were significantly higher in COPD than in healthy participants at rest. Parasternal intercostal muscle NMC was significantly higher in healthy than in COPD participants at rest, but not during threshold loading. Pmo-derived NMC and MEff ratios were lower in severe patients than in mild patients or healthy subjects during threshold loading, but differences were not consistently significant. During resting breathing and threshold loading, Vi-derived NVC and MEff ratios were significantly lower in severe patients than in mild patients or healthy subjects. sMMG is a potential noninvasive alternative to sEMG for assessing NRD in COPD. The ratios of Pmo and Vi to sMMG and sEMG measurements provide wholly noninvasive NMC, NVC, and MEff indices that are sensitive to impaired respiratory mechanics in COPD and are therefore of potential value to assess disease severity in clinical practice.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Electromiografía/métodos , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Respiración , Mecánica Respiratoria , Índice de Severidad de la Enfermedad
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5582-5585, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892389

RESUMEN

Fixed sample entropy (fSampEn) is a promising technique for the analysis of respiratory electromyographic (EMG) signals. Its use has shown outperformance of amplitude-based estimators such as the root mean square (RMS) in the evaluation of respiratory EMG signals with cardiac noise and a high correlation with respiratory signals, allowing changes in respiratory muscle activity to be tracked. However, the relationship between the fSampEn response to a given muscle activation has not been investigated. The aim of this study was to analyze the nature of the fSampEn measurements that are produced as the EMG activity increases linearly. Simulated EMG signals were generated and increased linearly. The effect of the parameters r and the size of the moving window N of the fSampEn were evaluated and compared with those obtained using the RMS. The RMS showed a linear trend throughout the study. A non-linear, sigmoidal-like behavior was found when analyzing the EMG signals using the fSampEn. The lower the values of r, the higher the non-linearity observed in the fSampEn results. Greater moving windows reduced the variation produced by too small values of r.Clinical Relevance- Understanding the inherent non-linear relationship produced when using the fSampEn in EMG recordings will contribute to the improvement of the respiratory muscle activation assessment at different levels of respiratory effort in patients with respiratory conditions, particularly during the inspiratory phase.


Asunto(s)
Músculos Respiratorios , Frecuencia Respiratoria , Electromiografía , Entropía , Corazón , Humanos
5.
Aerosp Med Hum Perform ; 92(8): 633-641, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34503616

RESUMEN

AbstractBACKGROUND: Members of the public will soon be taking commercial suborbital spaceflights with significant Gx (chest-to-back) acceleration potentially reaching up to 6 Gx. Pulmonary physiology is gravity-dependent and is likely to be affected, which may have clinical implications for medically susceptible individuals.METHODS: During 2-min centrifuge exposures ranging up to 6 Gx, 11 healthy subjects were studied using advanced respiratory techniques. These sustained exposures were intended to allow characterization of the underlying pulmonary response and did not replicate actual suborbital G profiles. Regional distribution of ventilation in the lungs was determined using electrical impedance tomography. Neural respiratory drive (from diaphragm electromyography) and work of breathing (from transdiaphragmatic pressures) were obtained via nasoesophageal catheters. Arterial blood gases were measured in a subset of subjects. Measurements were conducted while breathing air and breathing 15 oxygen to simulate anticipated cabin pressurization conditions.RESULTS: Acceleration caused hypoxemia that worsened with increasing magnitude and duration of Gx. Minimum arterial oxygen saturation at 6 Gx was 86 1 breathing air and 79 1 breathing 15 oxygen. With increasing Gx the alveolar-arterial (A-a) oxygen gradient widened progressively and the relative distribution of ventilation reversed from posterior to anterior lung regions with substantial gas-trapping anteriorly. Severe breathlessness accompanied large progressive increases in work of breathing and neural respiratory drive.DISCUSSION: Sustained high-G acceleration at magnitudes relevant to suborbital flight profoundly affects respiratory physiology. These effects may become clinically important in the most medically susceptible passengers, in whom the potential role of centrifuge-based preflight evaluation requires further investigation.Pollock RD, Jolley CJ, Abid N, Couper JH, Estrada-Petrocelli L, Hodkinson PD, Leonhardt S, Mago-Elliott S, Menden T, Rafferty G, Richmond G, Robbins PA, Ritchie GAD, Segal MJ, Stevenson AT, Tank HD, Smith TG. Pulmonary effects of sustained periods of high-G acceleration relevant to suborbital spaceflight. Aerosp Med Hum Perform. 2021; 92(7):633641.


Asunto(s)
Medicina Aeroespacial , Vuelo Espacial , Aceleración , Centrifugación , Gravitación , Humanos
6.
Sensors (Basel) ; 21(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806463

RESUMEN

This study aims to investigate noninvasive indices of neuromechanical coupling (NMC) and mechanical efficiency (MEff) of parasternal intercostal muscles. Gold standard assessment of diaphragm NMC requires using invasive techniques, limiting the utility of this procedure. Noninvasive NMC indices of parasternal intercostal muscles can be calculated using surface mechanomyography (sMMGpara) and electromyography (sEMGpara). However, the use of sMMGpara as an inspiratory muscle mechanical output measure, and the relationships between sMMGpara, sEMGpara, and simultaneous invasive and noninvasive pressure measurements have not previously been evaluated. sEMGpara, sMMGpara, and both invasive and noninvasive measurements of pressures were recorded in twelve healthy subjects during an inspiratory loading protocol. The ratios of sMMGpara to sEMGpara, which provided muscle-specific noninvasive NMC indices of parasternal intercostal muscles, showed nonsignificant changes with increasing load, since the relationships between sMMGpara and sEMGpara were linear (R2 = 0.85 (0.75-0.9)). The ratios of mouth pressure (Pmo) to sEMGpara and sMMGpara were also proposed as noninvasive indices of parasternal intercostal muscle NMC and MEff, respectively. These indices, similar to the analogous indices calculated using invasive transdiaphragmatic and esophageal pressures, showed nonsignificant changes during threshold loading, since the relationships between Pmo and both sEMGpara (R2 = 0.84 (0.77-0.93)) and sMMGpara (R2 = 0.89 (0.85-0.91)) were linear. The proposed noninvasive NMC and MEff indices of parasternal intercostal muscles may be of potential clinical value, particularly for the regular assessment of patients with disordered respiratory mechanics using noninvasive wearable and wireless devices.


Asunto(s)
Diafragma , Músculos Intercostales , Electromiografía , Voluntarios Sanos , Humanos , Mecánica Respiratoria
7.
IEEE Trans Biomed Eng ; 68(1): 298-307, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32746014

RESUMEN

Chronic Obstructive Pulmonary Disease (COPD) is one of the most common chronic conditions. The current assessment of COPD requires a maximal maneuver during a spirometry test to quantify airflow limitations of patients. Other less invasive measurements such as thoracic bioimpedance and myographic signals have been studied as an alternative to classical methods as they provide information about respiration. Particularly, strong correlations have been shown between thoracic bioimpedance and respiratory volume. The main objective of this study is to investigate bioimpedance and its combination with myographic parameters in COPD patients to assess the applicability in respiratory disease monitoring. We measured bioimpedance, surface electromyography and surface mechanomyography in forty-three COPD patients during an incremental inspiratory threshold loading protocol. We introduced two novel features that can be used to assess COPD condition derived from the variation of bioimpedance and the electrical and mechanical activity during each respiratory cycle. These features demonstrate significant differences between mild and severe patients, indicating a lower inspiratory contribution of the inspiratory muscles to global respiratory ventilation in the severest COPD patients. In conclusion, the combination of bioimpedance and myographic signals provides useful indices to noninvasively assess the breathing of COPD patients.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Músculos Respiratorios , Humanos , Mediciones del Volumen Pulmonar , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Respiración , Espirometría
8.
IEEE Trans Biomed Eng ; 68(3): 1005-1014, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32746073

RESUMEN

Surface electromyography (sEMG) can be used for the evaluation of respiratory muscle activity. Recording sEMG involves the use of surface electrodes in a bipolar configuration. However, electrocardiographic (ECG) interference and electrode orientation represent considerable drawbacks to bipolar acquisition. As an alternative, concentric ring electrodes (CREs) can be used for sEMG acquisition and offer great potential for the evaluation of respiratory muscle activity due to their enhanced spatial resolution and simple placement protocol, which does not depend on muscle fiber orientation. The aim of this work was to analyze the performance of CREs during respiratory sEMG acquisitions. Respiratory muscle sEMG was applied to the diaphragm and sternocleidomastoid muscles using a bipolar and a CRE configuration. Thirty-two subjects underwent four inspiratory load spontaneous breathing tests which was repeated after interchanging the electrode positions. We calculated parameters such as (1) spectral power and (2) median frequency during inspiration, and power ratios of inspiratory sEMG without ECG in relation to (3) basal sEMG without ECG (Rins/noise), (4) basal sEMG with ECG (Rins/cardio) and (5) expiratory sEMG without ECG (Rins/exp). Spectral power, Rins/noise and Rins/cardio increased with the inspiratory load. Significantly higher values (p < 0.05) of Rins/cardio and significantly higher median frequencies were obtained for CREs. Rins/noise and Rins/exp were higher for the bipolar configuration only in diaphragm sEMG recordings, whereas no significant differences were found in the sternocleidomastoid recordings. Our results suggest that the evaluation of respiratory muscle activity by means of sEMG can benefit from the remarkably reduced influence of cardiac activity, the enhanced detection of the shift in frequency content and the axial isotropy of CREs which facilitates its placement.


Asunto(s)
Diafragma , Músculos Respiratorios , Electrocardiografía , Electrodos , Electromiografía , Humanos , Músculo Esquelético
9.
J Thorac Dis ; 12(9): 5207-5223, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33145097

RESUMEN

The widespread use of cough counting tools has, to date, been limited by a reliance on human input to determine cough frequency. However, over the last two decades advances in digital technology and audio capture have reduced this dependence. As a result, cough frequency is increasingly recognised as a measurable parameter of respiratory disease. Cough frequency is now the gold standard primary endpoint for trials of new treatments for chronic cough, has been investigated as a marker of infectiousness in tuberculosis (TB), and used to demonstrate recovery in exacerbations of chronic obstructive pulmonary disease (COPD). This review discusses the principles of automatic cough detection and summarises key currently and recently used cough counting technology in clinical research. It additionally makes some predictions on future directions in the field based on recent developments. It seems likely that newer approaches to signal processing, the adoption of techniques from automatic speech recognition, and the widespread ownership of mobile devices will help drive forward the development of real-time fully automated ambulatory cough frequency monitoring over the coming years. These changes should allow cough counting systems to transition from their current status as a niche research tool in chronic cough to a much more widely applicable method for assessing, investigating and understanding respiratory disease.

10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 2748-2751, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018575

RESUMEN

Neural respiratory drive as measured by the electromyography allows the study of the imbalance between the load on respiratory muscles and its capacity. Surface respiratory electromyography (sEMG) is a non-invasive tool used for indirectly assessment of NRD. It also provides a way to evaluate the level and pattern of respiratory muscle activation. The prevalence of electrocardiographic activity (ECG) in respiratory sEMG signals hinders its proper evaluation. Moreover, the occurrence of abnormal heartbeats or cardiac arrhythmias in respiratory sEMG measures can make even more challenging the NRD estimation. Respiratory sEMG can be evaluated using the fixed sample entropy (fSampEn), a technique which is less affected by cardiac artefacts. The aim of this work was to investigate the performance of the fSampEn, the root mean square (RMS) and the average rectified value (ARV) on respiratory sEMG signals with supraventricular arrhythmias (SVA) for NRD estimation. fSampEn, ARV and RMS parameters increased as the inspiratory load increased during the test. fSampEn was less influenced by ECG with SVAs for the NRD estimation showing a greater response to respiratory sEMG, reflected with a higher percentage increase with increasing load (228 % total increase, compared to 142 % and 135 % for ARV and RMS, respectively).


Asunto(s)
Electrocardiografía , Músculos Respiratorios , Arritmias Cardíacas/diagnóstico , Electromiografía , Entropía , Humanos
11.
J Clin Sleep Med ; 16(11): 1847-1855, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32662419

RESUMEN

STUDY OBJECTIVES: Exercise capacity is impaired in obstructive sleep apnea (OSA). There are conflicting reports on the effect of continuous positive airway pressure (CPAP) on maximal exercise capacity. The objective of this review was to determine if there is a change in exercise capacity and anaerobic threshold following CPAP treatment in OSA patients. METHODS: We conducted a systematic review and meta-analyses to summarize the changes in peak rate of oxygen uptake (V̇O2 peak) or maximum rate of oxygen uptake (V̇O2 max) and anaerobic threshold (AT) during cardiopulmonary exercise testing following CPAP intervention in patients with OSA. A systematic literature review was conducted to identify published literature on markers of V̇O2 peak, V̇O2 max, and AT pre- vs post-CPAP using a web-based literature search of PubMed/MEDLINE, Embase, CINAHL, and Cochrane review (CENTRAL) databases. Two independent reviewers screened the articles for data extraction and analysis. RESULTS: The total search of all the databases returned 470 relevant citations. Following application of eligibility criteria, 6 studies were included in the final meta-analysis for V̇O2 peak, 2 studies for V̇O2 max, and five studies for AT. The meta-analysis showed a mean net difference in V̇O2 peak between pre- and post-CPAP of 2.69 mL·kg-1·min-1, P = .02, favoring treatment with CPAP. There was no difference in V̇O2 max or AT with CPAP treatment (mean net difference 0.66 mL·kg-1·min-1 [P = .78] and -144.98 mL·min-1 [P = .20] respectively). CONCLUSIONS: There is a paucity of high-quality studies investigating the effect of CPAP on exercise capacity. Our meta-analysis shows that V̇O2 peak increases following CPAP treatment in patients with OSA, but we did not observe any change in V̇O2 max or AT. Our findings should be considered preliminary and we recommend further randomized controlled trials to confirm our findings and to clarify the peak and maximum rates of oxygen uptake adaptations with CPAP therapy.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Apnea Obstructiva del Sueño , Prueba de Esfuerzo , Tolerancia al Ejercicio , Humanos , Apnea Obstructiva del Sueño/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...