Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sovrem Tekhnologii Med ; 12(6): 47-52, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796018

RESUMEN

The aim of the investigation was to study the biodegradation characteristics and rate of magnesium alloys in vitro. MATERIALS AND METHODS: We studied the biodegradation of magnesium alloys Mg-Zn-Ca and WE43 (Mg-Y-Nd-Zr) in homogenized (initial) condition and after strengthening by mechanical processing using equal channel angular pressing (ECAP). The samples were incubated in a model system based on reference fetal calf serum (FCS) in the static and dynamic modes. The morphology of alloy surfaces was analyzed using light microscopy and computed tomography. Biodegradation was assessed by calculating weight loss within a certain incubation period. Cell adhesion and colonization stimulation were quantified in terms of a cell index (CI) using an analyzer xCELLigence RTCA Systems (ACEA Biosciences, Inc., USA) during the incubation of HEK 293 cells on WE43 specimens. RESULTS: Strengthening of magnesium alloys Mg-Zn-Ca and WE43 using ECAP and, consequently, the changed structure resulted in the biodegradation acceleration as high as eightfold. Among the specimens incubated in FCS in different modes, those incubated in liquid flow exhibited the biodegradation rate twice as high as that of the specimens tested under static conditions. The biodegradation process was accompanied by local corrosion, although the degradation was primarily concentrated along the specimen margins stimulating cell adhesion and colonization. Such nature of degradation, as a rule, does not lead to anisotropy of the strength characteristics, that is important for medical materials. Superficial degradation of the alloys with no X-ray density changes in the bulk of the specimens was confirmed by computed tomography. CONCLUSION: The study of the biodegradation rate and further characteristics of magnesium alloys Mg-Zn-Ca and WE43 showed that the materials in both structural conditions are suitable for implants and can be used in bone implants and surgical fasteners.


Asunto(s)
Aleaciones , Magnesio , Aleaciones/química , Corrosión , Células HEK293 , Humanos , Magnesio/química , Ensayo de Materiales/métodos
2.
Mater Sci Eng C Mater Biol Appl ; 71: 483-497, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27987735

RESUMEN

Surface modification is an important step in production of medical implants. Surface roughening creates additional surface area to enhance the bonding between the implant and the bone. Recent research provided a means to alter the microstructure of titanium by severe plastic deformation (SPD) in order to increase its strength, and thereby reduce the size of the implants (specifically, their diameter). The purpose of the present study was to examine the effect of bulk microstructure of commercially pure titanium with coarse-grained (CG) and ultrafine-grained (UFG) bulk structure on the surface state of these materials after surface modification by sand blasting and acid etching (SLA). It was shown that SLA-modified surface characteristics, in particular, roughness, chemistry, and wettability, were affected by prior SPD processing. Additionally, biocompatibility of UFG titanium was examined using osteosarcoma cell line SaOS-2 and primary human adipose-derived mesenchymal stem cell (adMSC) cultures. Enhanced cell viability as well as increased matrix mineralization during osteogenic differentiation of MSCs on the surface of ultrafine-grained titanium was shown.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Titanio/química , Línea Celular , Humanos , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Propiedades de Superficie
3.
J Mech Behav Biomed Mater ; 57: 139-48, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26710259

RESUMEN

In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700µm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME.


Asunto(s)
Fenómenos Mecánicos , Poliésteres/química , Impresión Tridimensional , Andamios del Tejido/química , Durapatita/química , Calor , Ensayo de Materiales , Porosidad , Ingeniería de Tejidos
4.
J Mech Behav Biomed Mater ; 57: 55-68, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26703365

RESUMEN

Surface modification techniques are widely used to enhance the biological response to the implant materials. These techniques generally create a roughened surface, effectively increasing the surface area thus promoting cell adhesion. However, a negative side effect is a higher susceptibility of a roughened surface to failure due to the presence of multiple stress concentrators. The purpose of the study reported here was to examine the effects of surface modification by sand blasting and acid-etching (SLA) on the microstructure and fatigue performance of coarse-grained and ultrafine-grained (UFG) commercially pure titanium. Finer grain sizes, produced by equal channel angular pressing, resulted in lower values of surface roughness in SLA-processed material. This effect was associated with greater resistance of the UFG structure to plastic deformation. The fatigue properties of UFG Ti were found to be superior to those of coarse-grained Ti and conventional Ti-6Al-4V, both before and after SLA-treatment.


Asunto(s)
Ensayo de Materiales , Estrés Mecánico , Titanio/química , Concentración de Iones de Hidrógeno , Propiedades de Superficie
5.
Nanotechnology ; 26(43): 435701, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26436289

RESUMEN

The enhancement in the spontaneous emission rate (SER) for Ag, Au, and Al films on multilayer Si nanocrystals (SiNCs) was probed with time-resolved cathodoluminescence (CL). The SiNCs were grown on Si(100) using plasma enhanced chemical vapor deposition. Electron-hole pairs were generated in the metal-covered SiNCs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures that are opaque to laser or light excitation. Spatially, spectrally, and temporally resolved CL was used to measure the excitonic lifetime of the SiNCs in metal-covered and bare regions of the same samples. The observed enhancement in the SER for the metal-covered SiNCs, relative to the SER for the bare sample, is attributed to a coupling of the SiNC excitons with surface plasmon polaritons (SPPs) of the thin metal films. A maximum SER enhancement of ∼2.0, 1.4 and 1.2 was observed for the Ag, Au, and Al films, respectively, at a temperature of 55 K. The three chosen plasmonic metals of Ag, Au, and Al facilitate an interesting comparison of the exciton-SPP coupling for metal films that exhibit varying differences between the surface plasmon energy, ω(sp), and the SiNC excitonic emission energy. A modeling of the temperature dependence of the Purcell enhancement factor, Fp, was performed and included the temperature dependence of the dielectric properties of the metals.

6.
J Phys Condens Matter ; 27(26): 265802, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26076324

RESUMEN

The coupling of excitons to surface plasmon polaritons (SPPs) and longitudinal optical (LO) phonons in Au-, Ag-, and Al-coated InxGa1-xN/GaN multiple and single quantum wells (SQWs) was studied with time-resolved cathodoluminescence (CL) and CL wavelength imaging techniques. Excitons were generated in the metal-coated SQWs by injecting a pulsed high-energy electron beam through the thin metal films, which is found to be an ideal method of excitation for plasmonic quantum heterostructures and nanostructures which are opaque to laser/light excitation. The Purcell enhancement factor (Fp) at low temperatures was obtained by the direct measurement of changes in the carrier lifetime caused by the SQW exciton-SPP coupling. The deposition of thin films of Al, Ag, and Au on an InGaN/GaN QW enabled a comparison of exciton-SPP coupling for energy ranges in which the surface plasmon energy is greater than, approximately equal to, and less than the QW excitonic transition energy. We investigated the temperature dependence of the Huang-Rhys factors for exciton-to-LO phonon coupling for the metal-covered and bare samples. CL imaging and spectroscopy with variable excitation densities are used to examine the spatial correlations between CL emission intensity, carrier lifetime, QW excitonic emission energy, and the Huang-Rhys factor, all of which are strongly influenced by local fluctuations in the In composition and formation of InN-rich centers.

7.
Biofouling ; 29(2): 163-70, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23327438

RESUMEN

Despite the volume of work that has been conducted on the topic, the role of surface topography in mediating bacterial cell adhesion is not well understood. The primary reason for this lack of understanding is the relatively limited extent of topographical characterisation employed in many studies. In the present study, the topographies of three sub-nanometrically smooth titanium (Ti) surfaces were comprehensively characterised, using nine individual parameters that together describe the height, shape and distribution of their surface features. This topographical analysis was then correlated with the adhesion behaviour of the pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa, in an effort to understand the role played by each aspect of surface architecture in influencing bacterial attachment. While P. aeruginosa was largely unable to adhere to any of the three sub-nanometrically smooth Ti surfaces, the extent of S. aureus cell attachment was found to be greater on surfaces with higher average, RMS and maximum roughness and higher surface areas. The cells also attached in greater numbers to surfaces that had shorter autocorrelation lengths and skewness values that approached zero, indicating a preference for less ordered surfaces with peak heights and valley depths evenly distributed around the mean plane. Across the sub-nanometrically smooth range of surfaces tested, it was shown that S. aureus more easily attached to surfaces with larger features that were evenly distributed between peaks and valleys, with higher levels of randomness. This study demonstrated that the traditionally employed amplitudinal roughness parameters are not the only determinants of bacterial adhesion, and that spatial parameters can also be used to predict the extent of attachment.


Asunto(s)
Adhesión Bacteriana , Biopelículas , Nanopartículas del Metal/química , Pseudomonas aeruginosa/fisiología , Staphylococcus aureus/fisiología , Titanio/química , Carga Bacteriana , Simulación por Computador , Imagenología Tridimensional , Microscopía de Fuerza Atómica , Especificidad de la Especie , Propiedades de Superficie
8.
Phys Rev Lett ; 108(20): 205504, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-23003155

RESUMEN

Based on the irreversible thermodynamics approach to dislocation plasticity of metals, a simple description of the dislocation density evolution and strain hardening was suggested. An analytical expression for the fractal dimension (FD) of a cellular (or tangled) dislocation structure evolving in the course of plastic deformation was obtained on the basis of the dislocation model proposed. This makes it possible to trace the variation of FD of the dislocation cell structure with strain by just measuring the macroscopic stress-strain curve. The FD behavior predicted in this way showed good agreement with the experimentally measured FD evolution at different stages of deformation of a Ni single crystal and a Cu polycrystal. One new result following from the present model is that the FD of the bulk dislocation structure in a deforming metal peaks at a certain strain close to the onset of necking. The significance of fractal analysis as an informative index to follow the spatial evolution of dislocation structures approaching the critical state is highlighted.

9.
J Biomed Mater Res A ; 90(4): 1239-42, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18671257

RESUMEN

This work is part of a general effort to demonstrate the effect of the bulk microstructure of titanium as a model bone implant material on viability of osteoblasts (bone-forming cells). The objective of this work was to study the proliferation of preosteoblastic MC3T3-E1 cells extracted from mice embryos on commercial purity titanium substrates. Two distinct states of titanium were considered: as-received material with an average grain size of 4.5 microm and that processed by equal channel angular pressing (ECAP), with an average grain size of 200 nm. We report the first results of an in vitro study into the effect of this extreme grain refinement on viability and proliferation of MC3T3-E1 cells. By means of MTT assays it was demonstrated that ECAP processing of titanium enhances MC3T3-E1 culture proliferation in a spectacular way. This finding suggests that bone implants made from ECAP processed titanium may promote bone tissue growth.


Asunto(s)
Osteoblastos/citología , Células Madre/citología , Titanio , Animales , Sustitutos de Huesos , Técnicas de Cultivo de Célula , Ratones
10.
Phys Rev Lett ; 74(23): 4758-4761, 1995 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-10058591
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA