Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
Commun Biol ; 6(1): 789, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516746

RESUMEN

Cholesterol is an essential membrane structural component and steroid hormone precursor, and is involved in numerous signaling processes. Astrocytes regulate brain cholesterol homeostasis and they supply cholesterol to the needs of neurons. ATP-binding cassette transporter A1 (ABCA1) is the main cholesterol efflux transporter in astrocytes. Here we show dysregulated cholesterol homeostasis in astrocytes generated from human induced pluripotent stem cells (iPSCs) derived from males with fragile X syndrome (FXS), which is the most common cause of inherited intellectual disability. ABCA1 levels are reduced in FXS human and mouse astrocytes when compared with controls. Accumulation of cholesterol associates with increased desmosterol and polyunsaturated phospholipids in the lipidome of FXS mouse astrocytes. Abnormal astrocytic responses to cytokine exposure together with altered anti-inflammatory and cytokine profiles of human FXS astrocyte secretome suggest contribution of inflammatory factors to altered cholesterol homeostasis. Our results demonstrate changes of astrocytic lipid metabolism, which can critically regulate membrane properties and affect cholesterol transport in FXS astrocytes, providing target for therapy in FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil , Células Madre Pluripotentes Inducidas , Masculino , Animales , Ratones , Humanos , Síndrome del Cromosoma X Frágil/genética , Astrocitos , Metabolismo de los Lípidos , Citocinas , Homeostasis
3.
Front Endocrinol (Lausanne) ; 14: 1129534, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909303

RESUMEN

Introduction: Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene cause Fragile X Syndrome, the most common monogenic cause of intellectual disability. Mutations of FMR1 are also associated with reproductive disorders, such as early cessation of reproductive function in females. While progress has been made in understanding the mechanisms of mental impairment, the causes of reproductive disorders are not clear. FMR1-associated reproductive disorders were studied exclusively from the endocrine perspective, while the FMR1 role in neurons that control reproduction was not addressed. Results: Here, we demonstrate that similar to women with FMR1 mutations, female Fmr1 null mice stop reproducing early. However, young null females display larger litters, more corpora lutea in the ovaries, increased inhibin, progesterone, testosterone, and gonadotropin hormones in the circulation. Ovariectomy reveals both hypothalamic and ovarian contribution to elevated gonadotropins. Altered mRNA and protein levels of several synaptic molecules in the hypothalamus are identified, indicating reasons for hypothalamic dysregulation. Increased vascularization of corpora lutea, higher sympathetic innervation of growing follicles in the ovaries of Fmr1 nulls, and higher numbers of synaptic GABAA receptors in GnRH neurons, which are excitatory for GnRH neurons, contribute to increased FSH and LH, respectively. Unmodified and ovariectomized Fmr1 nulls have increased LH pulse frequency, suggesting that Fmr1 nulls exhibit hyperactive GnRH neurons, regardless of the ovarian feedback. Conclusion: These results reveal Fmr1 function in the regulation of GnRH neuron secretion, and point to the role of GnRH neurons, in addition to the ovarian innervation, in the etiology of Fmr1-mediated reproductive disorders.


Asunto(s)
Hormona Liberadora de Gonadotropina , Ovario , Animales , Femenino , Ratones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Mutación , Neuronas/metabolismo , Ovario/metabolismo
4.
iScience ; 25(9): 104877, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36034213

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a degenerative disease that progressively destroys motor neurons (MNs). Earlier studies identified EphA4, a receptor tyrosine kinase, as a possible disease-modifying gene. The complex interplay between the EphA4 receptor and its ephrin ligands in motor neurons and astrocytes has not yet been fully elucidated and includes a putative pro-apoptotic activity of the unbound receptor compared to ephrin-bound receptor. We recently reported that astrocytes from patients with ALS induce cell death in co-cultured MNs. Here we found that first-generation synthetic EphA4 agonistic agent 123C4, effectively protected MNs when co-cultured with reactive astrocytes from patients with ALS from multiple subgroups (sALS and mutant SOD1). Newer generation and more potent EphA4 agonistic agents 150D4, 150E8, and 150E7 provided effective protection at a lower therapeutic dose. Combined, the data suggest that the development of EphA4 agonistic agents provides potentially a promising therapeutic strategy for patients with ALS.

5.
Neurobiol Dis ; 162: 105577, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34871737

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is a leading genetic cause of autism and intellectual disability with cortical hyperexcitability and sensory hypersensitivity attributed to loss and hypofunction of inhibitory parvalbumin-expressing (PV) cells. Our studies provide novel insights into the role of excitatory neurons in abnormal development of PV cells during a postnatal period of inhibitory circuit refinement. METHODS: To achieve Fragile X mental retardation gene (Fmr1) deletion and re-expression in excitatory neurons during the postnatal day (P)14-P21 period, we generated CreCaMKIIa/Fmr1Flox/y (cOFF) and CreCaMKIIa/Fmr1FloxNeo/y (cON) mice, respectively. Cortical phenotypes were evaluated in adult mice using biochemical, cellular, clinically relevant electroencephalogram (EEG) and behavioral tests. RESULTS: We found that similar to global Fmr1 KO mice, the density of PV-expressing cells, their activation, and sound-evoked gamma synchronization were impaired in cOFF mice, but the phenotypes were improved in cON mice. cOFF mice also showed enhanced cortical gelatinase activity and baseline EEG gamma power, which were reduced in cON mice. In addition, TrkB phosphorylation and PV levels were lower in cOFF mice, which also showed increased locomotor activity and anxiety-like behaviors. Remarkably, when FMRP levels were restored in only excitatory neurons during the P14-P21 period, TrkB phosphorylation and mouse behaviors were also improved. CONCLUSIONS: These results indicate that postnatal deletion or re-expression of FMRP in excitatory neurons is sufficient to elicit or ameliorate structural and functional cortical deficits, and abnormal behaviors in mice, informing future studies about appropriate treatment windows and providing fundamental insights into the cellular mechanisms of cortical circuit dysfunction in FXS.


Asunto(s)
Síndrome del Cromosoma X Frágil , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ratones , Ratones Noqueados , Neuronas/fisiología
6.
Nat Neurosci ; 24(12): 1648-1659, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34848882

RESUMEN

The mechanistic underpinnings of autism remain a subject of debate and controversy. Why do individuals with autism share an overlapping set of atypical behaviors and symptoms, despite having different genetic and environmental risk factors? A major challenge in developing new therapies for autism has been the inability to identify convergent neural phenotypes that could explain the common set of symptoms that result in the diagnosis. Although no striking macroscopic neuropathological changes have been identified in autism, there is growing evidence that inhibitory interneurons (INs) play an important role in its neural basis. In this Review, we evaluate and interpret this evidence, focusing on recent findings showing reduced density and activity of the parvalbumin class of INs. We discuss the need for additional studies that investigate how genes and the environment interact to change the developmental trajectory of INs, permanently altering their numbers, connectivity and circuit engagement.


Asunto(s)
Trastorno Autístico , Humanos , Interneuronas/fisiología , Parvalbúminas/fisiología , Fenotipo
7.
Front Psychiatry ; 12: 720752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34690832

RESUMEN

The mechanisms underlying the common association between autism spectrum disorders (ASD) and sensory processing disorders (SPD) are unclear, and treatment options to reduce atypical sensory processing are limited. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and ASD behaviors. As in most children with ASD, atypical sensory processing is a common symptom in FXS, frequently manifesting as sensory hypersensitivity. Auditory hypersensitivity is a highly debilitating condition in FXS that may lead to language delays, social anxiety and ritualized repetitive behaviors. Animal models of FXS, including Fmr1 knock out (KO) mouse, also show auditory hypersensitivity, providing a translation relevant platform to study underlying pathophysiological mechanisms. The focus of this review is to summarize recent studies in the Fmr1 KO mouse that identified neural correlates of auditory hypersensitivity. We review results of electroencephalography (EEG) recordings in the Fmr1 KO mice and highlight EEG phenotypes that are remarkably similar to EEG findings in humans with FXS. The EEG phenotypes associated with the loss of FMRP include enhanced resting EEG gamma band power, reduced cross frequency coupling, reduced sound-evoked synchrony of neural responses at gamma band frequencies, increased event-related potential amplitudes, reduced habituation of neural responses and increased non-phase locked power. In addition, we highlight the postnatal period when the EEG phenotypes develop and show a strong association of the phenotypes with enhanced matrix-metalloproteinase-9 (MMP-9) activity, abnormal development of parvalbumin (PV)-expressing inhibitory interneurons and reduced formation of specialized extracellular matrix structures called perineuronal nets (PNNs). Finally, we discuss how dysfunctions of inhibitory PV interneurons may contribute to cortical hyperexcitability and EEG abnormalities observed in FXS. Taken together, the studies reviewed here indicate that EEG recordings can be utilized in both pre-clinical studies and clinical trials, while at the same time, used to identify cellular and circuit mechanisms of dysfunction in FXS. New therapeutic approaches that reduce MMP-9 activity and restore functions of PV interneurons may succeed in reducing FXS sensory symptoms. Future studies should examine long-lasting benefits of developmental vs. adult interventions on sensory phenotypes.

8.
J Neurodev Disord ; 13(1): 47, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645383

RESUMEN

BACKGROUND: Individuals with Fragile X syndrome (FXS) and autism spectrum disorder (ASD) exhibit an array of symptoms, including sociability deficits, increased anxiety, hyperactivity, and sensory hyperexcitability. It is unclear how endocannabinoid (eCB) modulation can be targeted to alleviate neurophysiological abnormalities in FXS as behavioral research reveals benefits to inhibiting cannabinoid (CB) receptor activation and increasing endocannabinoid ligand levels. Here, we hypothesize that enhancement of 2-arachidonoyl-sn-glycerol (2-AG) in Fragile X mental retardation 1 gene knock-out (Fmr1 KO) mice may reduce cortical hyperexcitability and behavioral abnormalities observed in FXS. METHODS: To test whether an increase in 2-AG levels normalized cortical responses in a mouse model of FXS, animals were subjected to electroencephalography (EEG) recording and behavioral assessment following treatment with JZL-184, an irreversible inhibitor of monoacylglycerol lipase (MAGL). Assessment of 2-AG was performed using lipidomic analysis in conjunction with various doses and time points post-administration of JZL-184. Baseline electrocortical activity and evoked responses to sound stimuli were measured using a 30-channel multielectrode array (MEA) in adult male mice before, 4 h, and 1 day post-intraperitoneal injection of JZL-184 or vehicle. Behavior assessment was done using the open field and elevated plus maze 4 h post-treatment. RESULTS: Lipidomic analysis showed that 8 mg/kg JZL-184 significantly increased the levels of 2-AG in the auditory cortex of both Fmr1 KO and WT mice 4 h post-treatment compared to vehicle controls. EEG recordings revealed a reduction in the abnormally enhanced baseline gamma-band power in Fmr1 KO mice and significantly improved evoked synchronization to auditory stimuli in the gamma-band range post-JZL-184 treatment. JZL-184 treatment also ameliorated anxiety-like and hyperactivity phenotypes in Fmr1 KO mice. CONCLUSIONS: Overall, these results indicate that increasing 2-AG levels may serve as a potential therapeutic approach to normalize cortical responses and improve behavioral outcomes in FXS and possibly other ASDs.


Asunto(s)
Trastorno del Espectro Autista , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Animales , Endocannabinoides , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Glicerol , Masculino , Ratones , Ratones Noqueados
9.
Glia ; 69(12): 2947-2962, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34427356

RESUMEN

The function of astrocytes intertwines with the extracellular matrix, whose neuron and glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities have been reported in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We compared human FXS and control astrocytes generated from human induced pluripotent stem cells and we found increased expression of urokinase plasminogen activator (uPA), which modulates degradation of extracellular matrix. Several pathways associated with uPA and its receptor function were activated in FXS astrocytes. Levels of uPA were also increased in conditioned medium collected from FXS hiPSC-derived astrocyte cultures and correlated inversely with intracellular Ca2+ responses to activation of L-type voltage-gated calcium channels in human astrocytes. Increased uPA augmented neuronal phosphorylation of TrkB within the docking site for the phospholipase-Cγ1 (PLCγ1), indicating effects of uPA on neuronal plasticity. Gene expression changes during neuronal differentiation preceding astrogenesis likely contributed to properties of astrocytes with FXS-specific alterations that showed specificity by not affecting differentiation of adenosine triphosphate (ATP)-responsive astrocyte population. To conclude, our studies identified uPA as an important regulator of astrocyte function and demonstrated that increased uPA in human FXS astrocytes modulated astrocytic responses and neuronal plasticity.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Células Madre Pluripotentes Inducidas , Animales , Astrocitos/metabolismo , Trastorno del Espectro Autista/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
10.
J Med Chem ; 64(15): 11229-11246, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34293864

RESUMEN

In this paper, we applied an innovative nuclear magnetic resonance (NMR)-guided screening and ligand design approach, named focused high-throughput screening by NMR (fHTS by NMR), to derive potent, low-molecular-weight ligands capable of mimicking interactions elicited by ephrin ligands on the receptor tyrosine kinase EphA4. The agents bind with nanomolar affinity, trigger receptor activation in cellular assays with motor neurons, and provide remarkable motor neuron protection from amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Structural studies on the complex between EphA4 ligand-binding domain and a most active agent provide insights into the mechanism of the agents at a molecular level. Together with preliminary in vivo pharmacology studies, the data form a strong foundation for the translation of these agents for the treatment of ALS and potentially other human diseases.


Asunto(s)
Aminoácidos/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Diseño de Fármacos , Fluorenos/farmacología , Receptor EphA4/agonistas , Aminoácidos/química , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Fluorenos/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Ligandos , Espectroscopía de Resonancia Magnética , Ratones , Ratones Transgénicos , Modelos Moleculares , Estructura Molecular , Receptor EphA4/metabolismo , Relación Estructura-Actividad , Termodinámica
11.
Front Neurosci ; 14: 771, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848552

RESUMEN

Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability. Many symptoms of FXS overlap with those in autism including repetitive behaviors, language delays, anxiety, social impairments and sensory processing deficits. Electroencephalogram (EEG) recordings from humans with FXS and an animal model, the Fmr1 knockout (KO) mouse, show remarkably similar phenotypes suggesting that EEG phenotypes can serve as biomarkers for developing treatments. This includes enhanced resting gamma band power and sound evoked total power, and reduced fidelity of temporal processing and habituation of responses to repeated sounds. Given the therapeutic potential of the antibiotic minocycline in humans with FXS and animal models, it is important to determine sensitivity and selectivity of EEG responses to minocycline. Therefore, in this study, we examined if a 10-day treatment of adult Fmr1 KO mice with minocycline (oral gavage, 30 mg/kg per day) would reduce EEG abnormalities. We tested if minocycline treatment has specific effects based on the EEG measurement type (e.g., resting versus sound-evoked) from the frontal and auditory cortex of the Fmr1 KO mice. We show increased resting EEG gamma power and reduced phase locking to time varying stimuli as well as the 40 Hz auditory steady state response in the Fmr1 KO mice in the pre-drug condition. Minocycline treatment increased gamma band phase locking in response to auditory stimuli, and reduced sound-evoked power of auditory event related potentials (ERP) in Fmr1 KO mice compared to vehicle treatment. Minocycline reduced resting EEG gamma power in Fmr1 KO mice, but this effect was similar to vehicle treatment. We also report frequency band-specific effects on EEG responses. Taken together, these data indicate that sound-evoked EEG responses may serve as more sensitive measures, compared to resting EEG measures, to isolate minocycline effects from placebo in humans with FXS. Given the use of minocycline and EEG recordings in a number of neurodegenerative and neurodevelopmental conditions, these findings may be more broadly applicable in translational neuroscience.

12.
J Neurosci ; 40(36): 6854-6871, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32801156

RESUMEN

Astrocytes are implicated in synapse formation and elimination, which are associated with developmental refinements of neuronal circuits. Astrocyte dysfunctions are also linked to synapse pathologies associated with neurodevelopmental disorders and neurodegenerative diseases. Although several astrocyte-derived secreted factors are implicated in synaptogenesis, the role of contact-mediated glial-neuronal interactions in synapse formation and elimination during development is still unknown. In this study, we examined whether the loss or overexpression of the membrane-bound ephrin-B1 in astrocytes during postnatal day (P) 14-28 period would affect synapse formation and maturation in the developing hippocampus. We found enhanced excitation of CA1 pyramidal neurons in astrocyte-specific ephrin-B1 KO male mice, which coincided with a greater vGlut1/PSD95 colocalization, higher dendritic spine density, and enhanced evoked AMPAR and NMDAR EPSCs. In contrast, EPSCs were reduced in CA1 neurons neighboring ephrin-B1-overexpressing astrocytes. Overexpression of ephrin-B1 in astrocytes during P14-28 developmental period also facilitated evoked IPSCs in CA1 neurons, while evoked IPSCs and miniature IPSC amplitude were reduced following astrocytic ephrin-B1 loss. Lower numbers of parvalbumin-expressing cells and a reduction in the inhibitory VGAT/gephyrin-positive synaptic sites on CA1 neurons in the stratum pyramidale and stratum oriens layers of KO hippocampus may contribute to reduced inhibition and higher excitation. Finally, dysregulation of excitatory/inhibitory balance in KO male mice is most likely responsible for impaired sociability observed in these mice. The ability of astrocytic ephrin-B1 to influence both excitatory and inhibitory synapses during development can potentially contribute to developmental refinement of neuronal circuits.SIGNIFICANCE STATEMENT This report establishes a link between astrocytes and the development of excitatory and inhibitory balance in the mouse hippocampus during early postnatal development. We provide new evidence that astrocytic ephrin-B1 differentially regulates development of excitatory and inhibitory circuits in the hippocampus during early postnatal development using a multidisciplinary approach. The ability of astrocytic ephrin-B1 to influence both excitatory and inhibitory synapses during development can potentially contribute to developmental refinement of neuronal circuits and associated behaviors. Given widespread and growing interest in the astrocyte-mediated mechanisms that regulate synapse development, and the role of EphB receptors in neurodevelopmental disorders, these findings establish a foundation for future studies of astrocytes in clinically relevant conditions.


Asunto(s)
Astrocitos/metabolismo , Efrina-B1/metabolismo , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Efrina-B1/genética , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Piramidales/metabolismo , Células Piramidales/fisiología , Conducta Social , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
13.
J Neurochem ; 155(5): 538-558, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32374912

RESUMEN

Individuals with Fragile X Syndrome (FXS) and autism spectrum disorder (ASD) exhibit cognitive impairments, social deficits, increased anxiety, and sensory hyperexcitability. Previously, we showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to abnormal development of parvalbumin (PV) interneurons and perineuronal nets (PNNs) in the developing auditory cortex (AC) of Fmr1 knock-out (KO) mice, which likely underlie auditory hypersensitivity. Thus, MMP-9 may serve as a potential target for treatment of auditory hypersensitivity in FXS. Here, we used the MMP-2/9 inhibitor, SB-3CT, to pharmacologically inhibit MMP-9 activity during a specific developmental period and to test whether inhibition of MMP-9 activity reverses neural oscillation deficits and behavioral impairments by enhancing PNN formation around PV cells in Fmr1 KO mice. Electroencephalography (EEG) was used to measure resting state and sound-evoked electrocortical activity in auditory and frontal cortices of postnatal day (P)22-23 male mice before and one-day after treatment with SB-3CT (25 mg/kg) or vehicle. At P27-28, animal behaviors were tested to measure the effects of the treatment on anxiety and hyperactivity. Results show that acute inhibition of MMP-9 activity improved evoked synchronization to auditory stimuli and ameliorated mouse behavioral deficits. MMP-9 inhibition enhanced PNN formation, increased PV levels and TrkB phosphorylation yet reduced Akt phosphorylation in the AC of Fmr1 KO mice. Our results show that MMP-9 inhibition during early postnatal development is beneficial in reducing some auditory processing deficits in the FXS mouse model and may serve as a candidate therapeutic for reversing sensory hypersensitivity in FXS and possibly other ASDs.


Asunto(s)
Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Compuestos Heterocíclicos con 1 Anillo/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Red Nerviosa/metabolismo , Sulfonas/farmacología , Animales , Animales Recién Nacidos , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/metabolismo , Percepción Auditiva/efectos de los fármacos , Electroencefalografía/efectos de los fármacos , Electroencefalografía/métodos , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/efectos de los fármacos , Nervios Periféricos/crecimiento & desarrollo , Nervios Periféricos/metabolismo
14.
J Neurophysiol ; 123(6): 2101-2121, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32319849

RESUMEN

Sensory processing abnormalities are frequently associated with autism spectrum disorders, but the underlying mechanisms are unclear. Here we studied auditory processing in a mouse model of Fragile X Syndrome (FXS), a leading known genetic cause of autism and intellectual disability. Both humans with FXS and the Fragile X mental retardation gene (Fmr1) knockout (KO) mouse model show auditory hypersensitivity, with the latter showing a strong propensity for audiogenic seizures (AGS) early in development. Because midbrain abnormalities cause AGS, we investigated whether the inferior colliculus (IC) of the Fmr1 KO mice shows abnormal auditory processing compared with wild-type (WT) controls at specific developmental time points. Using antibodies against neural activity marker c-Fos, we found increased density of c-Fos+ neurons in the IC, but not auditory cortex, of Fmr1 KO mice at P21 and P34 following sound presentation. In vivo single-unit recordings showed that IC neurons of Fmr1 KO mice are hyperresponsive to tone bursts and amplitude-modulated tones during development and show broader frequency tuning curves. There were no differences in rate-level responses or phase locking to amplitude-modulated tones in IC neurons between genotypes. Taken together, these data provide evidence for the development of auditory hyperresponsiveness in the IC of Fmr1 KO mice. Although most human and mouse work in autism and sensory processing has centered on the forebrain, our new findings, along with recent work on the lower brainstem, suggest that abnormal subcortical responses may underlie auditory hypersensitivity in autism spectrum disorders.NEW & NOTEWORTHY Autism spectrum disorders (ASD) are commonly associated with sensory sensitivity issues, but the underlying mechanisms are unclear. This study presents novel evidence for neural correlates of auditory hypersensitivity in the developing inferior colliculus (IC) in Fmr1 knockout (KO) mouse, a mouse model of Fragile X Syndrome (FXS), a leading genetic cause of ASD. Responses begin to show genotype differences between postnatal days 14 and 21, suggesting an early developmental treatment window.


Asunto(s)
Trastornos de la Percepción Auditiva/fisiopatología , Síndrome del Cromosoma X Frágil/fisiopatología , Colículos Inferiores/crecimiento & desarrollo , Colículos Inferiores/fisiopatología , Animales , Trastornos de la Percepción Auditiva/etiología , Modelos Animales de Enfermedad , Fenómenos Electrofisiológicos/fisiología , Epilepsia Refleja/etiología , Epilepsia Refleja/fisiopatología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/complicaciones , Masculino , Ratones , Ratones Noqueados , Neuronas/fisiología
15.
Artículo en Inglés | MEDLINE | ID: mdl-32256333

RESUMEN

Astrocytes play a fundamental role in synapse formation, pruning, and plasticity, which are associated with learning and memory. However, the role of astrocytes in learning and memory is still largely unknown. Our previous study showed that astrocyte-specific ephrin-B1 knock-out (KO) enhanced but ephrin-B1 overexpression (OE) in hippocampal astrocytes impaired contextual memory recall following fear conditioning. The goal of this study was to understand the mechanism by which astrocytic ephrin-B1 influences learning; specifically, learning-induced remodeling of synapses and dendritic spines in CA1 hippocampus using fear-conditioning paradigm. While we found a higher dendritic spine density and clustering on c-Fos-positive (+) neurons activated during contextual memory recall in both wild-type (WT) and KO mice, overall spine density and mEPSC amplitude were increased in CA1 neurons of KO compared to WT. In contrast, ephrin-B1 OE in hippocampal astrocytes impaired dendritic spine formation and clustering, specifically on c-Fos(+) neurons, coinciding with an overall decrease in vGlut1/PSD95 co-localization. Although astrocytic ephrin-B1 influenced learning-induced spine formation, the changes in astrocytic ephrin-B1 levels did not affect spine enlargement as no genotype differences in spine volume were observed between trained WT, KO, and OE groups. Our results suggest that a reduced formation of new spines rather than spine maturation in activated CA1 hippocampal neurons is most likely responsible for impaired contextual learning in OE mice due to abundantly high ephrin-B1 levels in astrocytes. The ability of astrocytic ephrin-B1 to negatively influence new spine formation during learning can potentially regulate new synapse formation at specific dendritic domains and underlie memory encoding.

16.
Neurobiol Dis ; 138: 104794, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32036032

RESUMEN

Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent EEG studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced inter-trial phase coherence of sound-evoked gamma oscillations. Identification of comparable EEG biomarkers in mouse models of FXS could facilitate the pre-clinical to clinical therapeutic pipeline. However, while human EEG studies have involved 128-channel scalp EEG acquisition, no mouse studies have been performed with more than three EEG channels. In the current study, we employed a recently developed 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in WT vs. Fmr1 KO mice. Using this system, we now report robust MEA-derived phenotypes including higher resting EEG power, altered event-related potentials (ERPs) and reduced inter-trial phase coherence to auditory chirp stimuli in Fmr1 KO mice that are remarkably similar to those reported in humans with FXS. We propose that the MEA system can be used for: (i) derivation of higher-level EEG parameters; (ii) EEG biomarkers for drug testing; and (ii) mechanistic studies of FXS pathophysiology.


Asunto(s)
Electroencefalografía , Síndrome del Cromosoma X Frágil/fisiopatología , Estimulación Acústica , Animales , Corteza Auditiva/fisiopatología , Biomarcadores , Modelos Animales de Enfermedad , Potenciales Evocados , Potenciales Evocados Auditivos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Ratones , Ratones Noqueados , Microelectrodos , Fenotipo
17.
Cereb Cortex ; 30(3): 969-988, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31364704

RESUMEN

Fragile X syndrome (FXS) is a leading genetic cause of autism with symptoms that include sensory processing deficits. In both humans with FXS and a mouse model [Fmr1 knockout (KO) mouse], electroencephalographic (EEG) recordings show enhanced resting state gamma power and reduced sound-evoked gamma synchrony. We previously showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to these phenotypes by affecting perineuronal nets (PNNs) around parvalbumin (PV) interneurons in the auditory cortex of Fmr1 KO mice. However, how different cell types within local cortical circuits contribute to these deficits is not known. Here, we examined whether Fmr1 deletion in forebrain excitatory neurons affects neural oscillations, MMP-9 activity, and PV/PNN expression in the auditory cortex. We found that cortical MMP-9 gelatinase activity, mTOR/Akt phosphorylation, and resting EEG gamma power were enhanced in CreNex1/Fmr1Flox/y conditional KO (cKO) mice, whereas the density of PV/PNN cells was reduced. The CreNex1/Fmr1Flox/y cKO mice also show increased locomotor activity, but not the anxiety-like behaviors. These results indicate that fragile X mental retardation protein changes in excitatory neurons in the cortex are sufficient to elicit cellular, electrophysiological, and behavioral phenotypes in Fmr1 KO mice. More broadly, these results indicate that local cortical circuit abnormalities contribute to sensory processing deficits in autism spectrum disorders.


Asunto(s)
Corteza Auditiva/fisiopatología , Conducta Animal , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Neuronas/fisiología , Prosencéfalo/fisiopatología , Estimulación Acústica , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Ritmo Gamma , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Transducción de Señal
18.
Neurobiol Dis ; 134: 104622, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31698054

RESUMEN

BACKGROUND: Fragile X syndrome (FXS) is the most common genetic cause of autism and intellectual disability. Fragile X mental retardation gene (Fmr1) knock-out (KO) mice display core deficits of FXS, including abnormally increased sound-evoked responses, and show a delayed development of parvalbumin (PV) cells. Here, we present the surprising result that sound exposure during early development reduces correlates of auditory hypersensitivity in Fmr1 KO mice. METHODS: Fmr1 KO and wild-type (WT) mice were raised in a sound-attenuated environment (AE) or sound-exposed (SE) to 14 kHz tones (5 Hz repetition rate) from P9 until P21. At P21-P23, event-related potentials (ERPs), dendritic spine density, PV expression and phosphorylation of tropomyosin receptor kinase B (TrkB) were analyzed in the auditory cortex of AE and SE mice. RESULTS: Enhanced N1 amplitude of ERPs, impaired PV cell development, and increased spine density in layers (L) 2/3 and L5/6 excitatory neurons were observed in AE Fmr1 KO compared to WT mice. In contrast, developmental sound exposure normalized ERP N1 amplitude, density of PV cells and dendritic spines in SE Fmr1 KO mice. Finally, TrkB phosphorylation was reduced in AE Fmr1 KO, but was enhanced in SE Fmr1 KO mice, suggesting that BDNF-TrkB signaling may be regulated by sound exposure to influence PV cell development. CONCLUSIONS: Our results demonstrate that sound exposure, but not attenuation, during early developmental window restores molecular, cellular and functional properties in the auditory cortex of Fmr1 KO mice, and suggest this approach as a potential treatment for sensory phenotypes in FXS.


Asunto(s)
Estimulación Acústica , Corteza Auditiva/fisiopatología , Síndrome del Cromosoma X Frágil/fisiopatología , Neurogénesis , Animales , Modelos Animales de Enfermedad , Potenciales Evocados/fisiología , Masculino , Ratones , Ratones Noqueados
19.
Neurobiol Learn Mem ; 164: 107042, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31326533

RESUMEN

Fragile X Syndrome (FXS) is a leading cause of heritable intellectual disability and autism. Humans with FXS show anxiety, sensory hypersensitivity and impaired learning. The mechanisms of learning impairments can be studied in the mouse model of FXS, the Fmr1 KO mouse, using tone-associated fear memory paradigms. Our previous study reported impaired development of parvalbumin (PV) positive interneurons and perineuronal nets (PNN) in the auditory cortex of Fmr1 KO mice. A recent study suggested PNN dynamics in the auditory cortex following tone-shock association is necessary for fear expression. Together these data suggest that abnormal PNN regulation may underlie tone-fear association learning deficits in Fmr1 KO mice. We tested this hypothesis by quantifying PV and PNN expression in the amygdala, hippocampus and auditory cortex of Fmr1 KO mice following fear conditioning. We found impaired tone-associated memory formation in Fmr1 KO mice. This was paralleled by impaired learning-associated regulation of PNNs in the superficial layers of auditory cortex in Fmr1 KO mice. PV cell density decreased in the auditory cortex in response to fear conditioning in both WT and Fmr1 KO mice. Learning-induced increase of PV expression in the CA3 hippocampus was only observed in WT mice. We also found reduced PNN density in the amygdala and auditory cortex of Fmr1 KO mice in all conditions, as well as reduced PNN intensity in CA2 hippocampus. There was a positive correlation between tone-associated memory and PNN density in the amygdala and auditory cortex, consistent with a tone-association deficit. Altogether our studies suggest a link between impaired PV and PNN regulation within specific regions of the fear conditioning circuit and impaired tone memory formation in Fmr1 KO mice.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Auditiva/fisiología , Miedo/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Memoria/fisiología , Neuronas/fisiología , Animales , Condicionamiento Clásico , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Interneuronas/fisiología , Masculino , Ratones Noqueados , Vías Nerviosas/fisiología , Parvalbúminas/metabolismo
20.
Behav Brain Res ; 372: 112068, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31271818

RESUMEN

Fragile X Syndrome (FXS) is a leading genetic cause of autism and intellectual disabilities. The Fmr1 knockout (KO) mouse is a commonly studied pre-clinical model of FXS. Adult male Fmr1 KO mice produce fewer ultrasonic vocalizations (USVs) during mating, suggestive of abnormal social communication. Minocycline treatment for 2 months from birth alleviates a number of FXS phenotypes in mice, including USV call rate deficits. In the current study, we investigated if treatment initiated past the early developmental period would be effective, given that in many cases, individuals with FXS are treated during later developmental periods. Wildtype (WT) and Fmr1 KO mice were treated with minocycline between postnatal day (P) 30 and P58. Mating-related USVs were then recorded from these mice between P75 and P90 and analyzed for call rate, duration, bandwidth, and peak frequency. Untreated Fmr1 KO mice call at a significantly reduced rate compared to untreated WT mice. After minocycline treatment from 1 to 2 months of age, WT and Fmr1 KO mice exhibited similar call rates, due to an increase in calling in the latter group. Minocycline is thought to be effective in reducing FXS symptoms by lowering matrix-metalloproteinase-9 (MMP-9) levels. To determine whether abnormal MMP-9 levels underlie USV deficits, we characterized USVs in Fmr1 KO mice which were heterozygous for MMP-9 (MMP-9+/-/Fmr1 KO). The MMP-9+/-/Fmr1 KO mice were between P75 and P90 at the time of recording. MMP-9+/-/Fmr1 KO mice exhibited significantly increased USV call rates, at times even exceeding WT rates. Taken together, these results suggest that minocycline may reverse USV call rate deficits in Fmr1 KO mice through attenuation of MMP-9 levels. These data suggest targeting MMP-9, even in late development, may reduce FXS symptoms.


Asunto(s)
Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Metaloproteinasa 9 de la Matriz/genética , Minociclina/farmacología , Vocalización Animal/efectos de los fármacos , Comunicación Animal , Animales , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Masculino , Metaloproteinasa 9 de la Matriz/deficiencia , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Noqueados , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA