Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1369238, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585273

RESUMEN

Introduction: Exosome-enriched small extracellular vesicles (sEVs) are nanosized organelles known to participate in long distance communication between cells, including in the skin. Atopic dermatitis (AD) is a chronic inflammatory skin disease for which filaggrin (FLG) gene mutations are the strongest genetic risk factor. Filaggrin insufficiency affects multiple cellular function, but it is unclear if sEV-mediated cellular communication originating from the affected keratinocytes is also altered, and if this influences peptide and lipid antigen presentation to T cells in the skin. Methods: Available mRNA and protein expression datasets from filaggrin-insufficient keratinocytes (shFLG), organotypic models and AD skin were used for gene ontology analysis with FunRich tool. sEVs secreted by shFLG and control shC cells were isolated from conditioned media by differential centrifugation. Mass spectrometry was carried out for lipidomic and proteomic profiling of the cells and sEVs. T cell responses to protein, peptide, CD1a lipid antigens, as well as phospholipase A2-digested or intact sEVs were measured by ELISpot and ELISA. Results: Data analysis revealed extensive remodeling of the sEV compartment in filaggrin insufficient keratinocytes, 3D models and the AD skin. Lipidomic profiles of shFLGsEV showed a reduction in the long chain (LCFAs) and polyunsaturated fatty acids (PUFAs; permissive CD1a ligands) and increased content of the bulky headgroup sphingolipids (non-permissive ligands). This resulted in a reduction of CD1a-mediated interferon-γ T cell responses to the lipids liberated from shFLG-generated sEVs in comparison to those induced by sEVs from control cells, and an increase in interleukin 13 secretion. The altered sEV lipidome reflected a generalized alteration in the cellular lipidome in filaggrin-insufficient cells and the skin of AD patients, resulting from a downregulation of key enzymes implicated in fatty acid elongation and desaturation, i.e., enzymes of the ACSL, ELOVL and FADS family. Discussion: We determined that sEVs constitute a source of antigens suitable for CD1a-mediated presentation to T cells. Lipids enclosed within the sEVs secreted on the background of filaggrin insufficiency contribute to allergic inflammation by reducing type 1 responses and inducing a type 2 bias from CD1a-restricted T cells, thus likely perpetuating allergic inflammation in the skin.


Asunto(s)
Dermatitis Atópica , Vesículas Extracelulares , Humanos , Vesículas Extracelulares/metabolismo , Proteínas Filagrina , Inflamación , Proteínas de Filamentos Intermediarios/genética , Queratinocitos , Lípidos , Péptidos/metabolismo , Proteómica , Linfocitos T/metabolismo
2.
Nat Commun ; 14(1): 7216, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940670

RESUMEN

Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, mainly because of the marked cellular infiltrate and architecturally distorted microstructure. To address this, we develop a suite of mathematical tools to search for statistically significant co-locations amongst immune and structural cells identified using 37-plex imaging mass cytometry. This unbiased method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage stage. These findings offer further insights into how immune cells interact in the lungs of severe COVID-19 disease. We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis.


Asunto(s)
COVID-19 , Neutrófilos , Humanos , Linfocitos T CD8-positivos , Pulmón , Linfocitos T Citotóxicos
3.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36472908

RESUMEN

Severe lung damage resulting from COVID-19 involves complex interactions between diverse populations of immune and stromal cells. In this study, we used a spatial transcriptomics approach to delineate the cells, pathways, and genes present across the spectrum of histopathological damage in COVID-19-affected lung tissue. We applied correlation network-based approaches to deconvolve gene expression data from 46 areas of interest covering more than 62,000 cells within well-preserved lung samples from 3 patients. Despite substantial interpatient heterogeneity, we discovered evidence for a common immune-cell signaling circuit in areas of severe tissue that involves crosstalk between cytotoxic lymphocytes and pro-inflammatory macrophages. Expression of IFNG by cytotoxic lymphocytes was associated with induction of chemokines, including CXCL9, CXCL10, and CXCL11, which are known to promote the recruitment of CXCR3+ immune cells. The TNF superfamily members BAFF (TNFSF13B) and TRAIL (TNFSF10) were consistently upregulated in the areas with severe tissue damage. We used published spatial and single-cell SARS-CoV-2 data sets to validate our findings in the lung tissue from additional cohorts of patients with COVID-19. The resulting model of severe COVID-19 immune-mediated tissue pathology may inform future therapeutic strategies.


Asunto(s)
COVID-19 , Neumonía , Humanos , Transcriptoma , SARS-CoV-2 , Pulmón
4.
Eur J Immunol ; 52(3): 511-524, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34913478

RESUMEN

Psoriasis is a chronic inflammatory skin disease characterized by Th17 responses. Recent evidence has identified Langerhans cells to have a key role in disease pathogenesis, with constitutive high expression of CD1a and capacity to present lipid antigens to T cells. Phospholipase A2 enzymes generate neolipid antigens for recognition by CD1a-reactive T cells; however, the broader enzymatic pathways of CD1a lipid ligand generation have not been thoroughly investigated. In this study, we used immunofluorescence of skin and ELISpot analyses of CD1a-reactive T cells to investigate the role of the lipase acyloxyacyl hydrolase (AOAH) in CD1a ligand generation with relevance to the pathogenesis of psoriasis. We found that the PLA2 activity of rAOAH leads to the activation of circulating CD1a auto-reactive T cells, leading to the production of IFN-γ and IL-22. Circulating AOAH-responsive CD1a-reactive T cells from patients with psoriasis showed elevated IL-22 production. We observed that AOAH is highly expressed in psoriatic lesions compared to healthy skin. Overall, these data present a role for AOAH in generating antigens that activate circulating lipid-specific CD1a-restricted T cells and, thus, contribute to psoriatic inflammation. These findings suggest that inhibition of PLA2 activity of AOAH may have therapeutic potential for individuals with psoriasis.


Asunto(s)
Psoriasis , Hidrolasas de Éster Carboxílico , Humanos , Interleucinas , Ligandos , Lípidos , Fosfolipasas/metabolismo , Piel , Interleucina-22
5.
FASEB Bioadv ; 1(5): 332-343, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-32123836

RESUMEN

Primary biliary cholangitis (PBC) is a chronic autoimmune liver disease. Approximately 30% of patients do not respond to therapy with ursodeoxycholic acid (UDCA). Previous studies have implicated increased senescence of cholangiocytes in patients who do not respond to UDCA. This may increase the release of cytokines which drive pathogenic T cell polarization. As FXR agonists are beneficial in treating UDCA non-responsive patients, the current study was designed to model the interactions between cholangiocytes and CD4+ T cells to investigate potential immunomodulatory mechanisms of bile acid receptor agonists. Human cholangiocytes were co-cultured with CD4+ T cells to model the biliary stress response. Senescent cholangiocytes were able to polarize T cells toward a Th17 phenotype and suppressed expression of FoxP3 (P = 0.0043). Whilst FXR and TGR5 receptor agonists were unable directly to alter cholangiocyte cytokine expression, FGF19 was capable of significantly reducing IL-6 release (P = 0.044). Bile acid receptor expression was assessed in PBC patients with well-characterized responsiveness to UDCA therapy. A reduction in FXR staining was observed in both cholangiocytes and hepatocytes in PBC patients without adequate response to UDCA. Increased IL-6 expression by senescent cholangiocytes represents a potential mechanism by which biliary damage in PBC could contribute to excessive inflammation.

6.
Therap Adv Gastroenterol ; 9(3): 376-91, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27134666

RESUMEN

Recent developments in understanding the role of bile acids (BAs) as signalling molecules in human metabolism and inflammation have opened new avenues in the field of hepatology research. BAs are no longer considered as simple molecules helping in fat digestion but as agents with real therapeutic value in treating complex autoimmune and metabolic liver diseases. BAs and their receptors such as farnesoid X receptor, transmembrane G protein-coupled receptor 5 and peroxisome proliferator-activated receptor have been identified as novel targets for drug development. Some of these novel pharmaceuticals are already in clinical evaluation with the most advanced drugs having reached phase III trials. Chronic liver diseases such as primary biliary cholangitis, primary sclerosing cholangitis and nonalcoholic fatty liver disease, for which there is no or limited pharmacotherapy, are most likely to gain from these developments. In this review we discuss recent and the most relevant basic and clinical research findings related to BAs and their implications for novel therapy for chronic liver diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...