Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 382(2266): 20230089, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38104615

RESUMEN

In the search for clues to the matter-antimatter puzzle, experiments with atoms or molecules play a particular role. These systems allow measurements with very high precision, as demonstrated by the unprecedented limits down to [Formula: see text] e cm on electron EDM using molecular ions, and relative measurements at the level of [Formula: see text] in spectroscopy of antihydrogen atoms. Building on these impressive measurements, new experimental directions offer potential for drastic improvements. We review here some of the new perspectives in those fields and their associated prospects for new physics searches. This article is part of the theme issue 'The particle-gravity frontier'.

2.
Phys Rev Lett ; 131(22): 222502, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101341

RESUMEN

Collinear laser spectroscopy was performed on the isomer of the aluminium isotope ^{26m}Al. The measured isotope shift to ^{27}Al in the 3s^{2}3p ^{2}P_{3/2}^{○}→3s^{2}4s ^{2}S_{1/2} atomic transition enabled the first experimental determination of the nuclear charge radius of ^{26m}Al, resulting in R_{c}=3.130(15) fm. This differs by 4.5 standard deviations from the extrapolated value used to calculate the isospin-symmetry breaking corrections in the superallowed ß decay of ^{26m}Al. Its corrected Ft value, important for the estimation of V_{ud} in the Cabibbo-Kobayashi-Maskawa matrix, is thus shifted by 1 standard deviation to 3071.4(1.0) s.

3.
Phys Rev Lett ; 128(2): 022502, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35089728

RESUMEN

Collinear laser spectroscopy is performed on the nickel isotopes ^{58-68,70}Ni, using a time-resolved photon counting system. From the measured isotope shifts, nuclear charge radii R_{c} are extracted and compared to theoretical results. Three ab initio approaches all employ, among others, the chiral interaction NNLO_{sat}, which allows an assessment of their accuracy. We find agreement with experiment in differential radii δ⟨r_{c}^{2}⟩ for all employed ab initio methods and interactions, while the absolute radii are consistent with data only for NNLO_{sat}. Within nuclear density functional theory, the Skyrme functional SV-min matches experiment more closely than the Fayans functional Fy(Δr,HFB).

4.
Phys Rev Lett ; 124(13): 132502, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32302185

RESUMEN

We present the first laser spectroscopic measurement of the neutron-rich nucleus ^{68}Ni at the N=40 subshell closure and extract its nuclear charge radius. Since this is the only short-lived isotope for which the dipole polarizability α_{D} has been measured, the combination of these observables provides a benchmark for nuclear structure theory. We compare them to novel coupled-cluster calculations based on different chiral two- and three-nucleon interactions, for which a strong correlation between the charge radius and dipole polarizability is observed, similar to the stable nucleus ^{48}Ca. Three-particle-three-hole correlations in coupled-cluster theory substantially improve the description of the experimental data, which allows to constrain the neutron radius and neutron skin of ^{68}Ni.

5.
Phys Rev Lett ; 122(19): 192502, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31144969

RESUMEN

The change in mean-square nuclear charge radii δ⟨r^{2}⟩ along the even-A tin isotopic chain ^{108-134}Sn has been investigated by means of collinear laser spectroscopy at ISOLDE/CERN using the atomic transitions 5p^{2} ^{1}S_{0}→5p6 s^{1}P_{1} and 5p^{2} ^{3}P_{0}→5p6s ^{3}P_{1}. With the determination of the charge radius of ^{134}Sn and corrected values for some of the neutron-rich isotopes, the evolution of the charge radii across the N=82 shell closure is established. A clear kink at the doubly magic ^{132}Sn is revealed, similar to what has been observed at N=82 in other isotopic chains with larger proton numbers, and at the N=126 shell closure in doubly magic ^{208}Pb. While most standard nuclear density functional calculations struggle with a consistent explanation of these discontinuities, we demonstrate that a recently developed Fayans energy density functional provides a coherent description of the kinks at both doubly magic nuclei, ^{132}Sn and ^{208}Pb, without sacrificing the overall performance. A multiple correlation analysis leads to the conclusion that both kinks are related to pairing and surface effects.

7.
Phys Rev Lett ; 116(18): 182502, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27203317

RESUMEN

Collinear laser spectroscopy is performed on the _{30}^{79}Zn_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life is confirmed, and the nuclear spins and moments of the ground and isomeric states in ^{79}Zn as well as the isomer shift are measured. From the observed hyperfine structures, spins I=9/2 and I=1/2 are firmly assigned to the ground and isomeric states. The magnetic moment µ (^{79}Zn)=-1.1866(10)µ_{N}, confirms the spin-parity 9/2^{+} with a νg_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment µ (^{79m}Zn)=-1.0180(12)µ_{N} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state, δ⟨r_{c}^{2}⟩^{79,79m}=+0.204(6) fm^{2}, providing first evidence of shape coexistence.

8.
Phys Rev Lett ; 110(13): 130801, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581304

RESUMEN

For the first time a single trapped antiproton (p) is used to measure the p magnetic moment µ(p). The moment µ(p)=µ(p)S/(ℏ/2) is given in terms of its spin S and the nuclear magneton (µ(N)) by µ(p)/µ(N)=-2.792 845±0.000 012. The 4.4 parts per million (ppm) uncertainty is 680 times smaller than previously realized. Comparing to the proton moment measured using the same method and trap electrodes gives µ(p)/µ(p)=-1.000 000±0.000 005 to 5 ppm, for a proton moment µ(p)=µ(p)S/(ℏ/2), consistent with the prediction of the CPT theorem.

9.
Phys Rev Lett ; 108(21): 212501, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003246

RESUMEN

Recent high-precision mass measurements of 9Li and 9Be, performed with the TITAN Penning trap at the TRIUMF ISAC facility, are analyzed in light of state-of-the-art shell model calculations. We find an explanation for the anomalous isobaric mass multiplet equation behavior for the two A=9 quartets. The presence of a cubic d=6.3(17) keV term for the J(π)=3/2(-) quartet and the vanishing cubic term for the excited J(π)=1/2(-) multiplet depend upon the presence of a nearby T=1/2 state in 9B and 9Be that induces isospin mixing. This is contrary to previous hypotheses involving purely Coulomb and charge-dependent effects. T=1/2 states have been observed near the calculated energy, above the T=3/2 state. However, an experimental confirmation of their J(π) is needed.

10.
Phys Rev Lett ; 109(3): 032506, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22861844

RESUMEN

We present precision Penning trap mass measurements of neutron-rich calcium and potassium isotopes in the vicinity of neutron number N=32. Using the TITAN system, the mass of 51K was measured for the first time, and the precision of the (51,52)Ca mass values were improved significantly. The new mass values show a dramatic increase of the binding energy compared to those reported in the atomic mass evaluation. In particular, 52Ca is more bound by 1.74 MeV, and the behavior with neutron number deviates substantially from the tabulated values. An increased binding was predicted recently based on calculations that include three-nucleon (3N) forces. We present a comparison to improved calculations, which agree remarkably with the evolution of masses with neutron number, making neutron-rich calcium isotopes an exciting region to probe 3N forces.

11.
Phys Rev Lett ; 108(5): 052504, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22400930

RESUMEN

The first direct mass measurement of {6}He has been performed with the TITAN Penning trap mass spectrometer at the ISAC facility. In addition, the mass of {8}He was determined with improved precision over our previous measurement. The obtained masses are m({6}He)=6.018 885 883(57) u and m({8}He)=8.033 934 44(11) u. The {6}He value shows a deviation from the literature of 4σ. With these new mass values and the previously measured atomic isotope shifts we obtain charge radii of 2.060(8) and 1.959(16) fm for {6}He and {8}He, respectively. We present a detailed comparison to nuclear theory for {6}He, including new hyperspherical harmonics results. A correlation plot of the point-proton radius with the two-neutron separation energy demonstrates clearly the importance of three-nucleon forces.

12.
Rev Sci Instrum ; 83(2): 02A912, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22380253

RESUMEN

TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) constitutes the only high precision mass measurement setup coupled to a rare isotope facility capable of increasing the charge state of short-lived nuclides prior to the actual mass determination in a Penning trap. Recent developments around TITAN's charge breeder, the electron beam ion trap, form the basis for several successful experiments on radioactive isotopes with half-lives as low as 65 ms and in charge states as high as 22+.

13.
Phys Rev Lett ; 107(21): 212502, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22181875

RESUMEN

Collinear-laser spectroscopy with the bunched-beams technique was used for the study of neutron deficient Rb isotopes, out to (74)Rb (N = Z = 37) at TRIUMF. The measured hyperfine coupling constants of (76,78m)Rb were in agreement with literature values. The nuclear spin of (75)Rb was confirmed to be I = 3/2, and its hyperfine coupling constants were measured for the first time. The mean-square charge radius of (74)Rb was determined for the first time. This result has improved the isospin symmetry breaking correction term used to calculate the Ft value, with implications for tests of the unitarity of the Cabibbo-Kobayashi-Maskawa matrix.

14.
Phys Rev Lett ; 106(3): 032501, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21405268

RESUMEN

A high-precision half-life measurement for the superallowed ß+ emitter 26Al(m) was performed at the TRIUMF-ISAC radioactive ion beam facility yielding T 1/2 6346.54 ± 0.46(stat) ± 0.60 (syst) ms, consistent with, but 2.5 times more precise than, the previous world average. The 26Al(m) half-life and ft value, 3037.53(61) s, are now the most precisely determined for any superallowed ß decay. Combined with recent theoretical corrections for isospin-symmetry-breaking and radiative effects, the corrected Ft value for (26)Al(m), 3073.0(12) s, sets a new benchmark for the high-precision superallowed Fermi ß-decay studies used to test the conserved vector current hypothesis and determine the V(ud) element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix.


Asunto(s)
Aluminio/química , Partículas beta , Radioisótopos/química , Semivida
15.
Phys Rev Lett ; 107(27): 272501, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22243307

RESUMEN

Penning trap mass measurements of short-lived nuclides have been performed for the first time with highly charged ions, using the TITAN facility at TRIUMF. Compared to singly charged ions, this provides an improvement in experimental precision that scales with the charge state q. Neutron-deficient Rb isotopes have been charge bred in an electron beam ion trap to q=8-12+ prior to injection into the Penning trap. In combination with the Ramsey excitation scheme, this unique setup creating low energy, highly charged ions at a radioactive beam facility opens the door to unrivaled precision with gains of 1-2 orders of magnitude. The method is particularly suited for short-lived nuclides such as the superallowed ß emitter 74Rb (T(1/2)=65 ms). The determination of its atomic mass and an improved Q(EC) value are presented.

16.
Phys Rev Lett ; 101(20): 202501, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19113333

RESUMEN

In this Letter, we report a new mass for 11Li using the trapping experiment TITAN at TRIUMF's ISAC facility. This is by far the shortest-lived nuclide, t_{1/2}=8.8 ms, for which a mass measurement has ever been performed with a Penning trap. Combined with our mass measurements of ;{8,9}Li we derive a new two-neutron separation energy of 369.15(65) keV: a factor of 7 more precise than the best previous value. This new value is a critical ingredient for the determination of the halo charge radius from isotope-shift measurements. We also report results from state-of-the-art atomic-physics calculations using the new mass and extract a new charge radius for 11Li. This result is a remarkable confluence of nuclear and atomic physics.

17.
Phys Rev Lett ; 100(19): 192504, 2008 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-18518447

RESUMEN

The branching ratio for the superallowed beta(+) decay of (38)K(m) was measured at TRIUMF's ISAC radioactive ion beam facility. The M3 internal transition between the isomer and the ground state of (38)K(m) was observed with a branching ratio of 330(43) ppm. A search for the nonanalogue beta-decay branch to the first excited 0(+) state in (38)Ar was also performed and yielded an upper limit of < or =12 ppm at 90% C.L. These measurements lead to a revised superallowed branching ratio for (38)K(m) of 99.967(4)%, and increase the (38)K(m) ft value by its entire quoted uncertainty to ft=3052.1(10) s. Implications for tests of the nuclear-structure dependent corrections in superallowed beta decays and the extraction of the Cabibbo-Kobayashi-Maskawa matrix element V(ud) are discussed.

18.
Phys Rev Lett ; 99(7): 072502, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17930889

RESUMEN

We report on the first spectroscopy study of the very neutron-rich nucleus (36)(12)Mg24 using the direct two-proton knockout reaction 9Be(38Si,36Mg+gamma)X at 83 MeV/nucleon. The energy of the first excited 2+ state of 36Mg, E(2+(1)=660(6) keV, was measured. The magnitude of the partial cross sections to the ground state and the 2+(1) state is indicative of strong intruder admixtures in the lowest-lying states as suggested by Monte Carlo shell-model calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...