Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 34(7): 1522-30, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24855057

RESUMEN

OBJECTIVE: Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.1 and Kv7.5 are expressed in many vessels. Kv7.1 is under intense investigation because Kv7.1 blockers fail to modulate smooth muscle reactivity. In this study, we analyzed whether Kv7.1 and Kv7.5 may form functional heterotetrameric channels increasing the channel diversity in vascular smooth muscles. APPROACH AND RESULTS: Kv7.1 and Kv7.5 currents elicited in arterial myocytes, oocyte, and mammalian expression systems suggest the formation of heterotetrameric complexes. Kv7.1/Kv7.5 heteromers, exhibiting different pharmacological characteristics, participate in the arterial tone. Kv7.1/Kv7.5 associations were confirmed by coimmunoprecipitation, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching experiments. Kv7.1/Kv7.5 heterotetramers were highly retained at the endoplasmic reticulum. Studies in HEK-293 cells, heart, brain, and smooth and skeletal muscles demonstrated that the predominant presence of Kv7.5 stimulates release of Kv7.1/Kv7.5 oligomers out of lipid raft microdomains. Electrophysiological studies supported that KCNE1 and KCNE3 regulatory subunits further increased the channel diversity. Finally, the analysis of rat isolated myocytes and human blood vessels demonstrated that Kv7.1 and Kv7.5 exhibited a differential expression, which may lead to channel diversity. CONCLUSIONS: Kv7.1 and Kv7.5 form heterotetrameric channels increasing the diversity of structures which fine-tune blood vessel reactivity. Because the lipid raft localization of ion channels is crucial for cardiovascular physiology, Kv7.1/Kv7.5 heteromers provide efficient spatial and temporal regulation of smooth muscle function. Our results shed light on the debate about the contribution of Kv7 channels to vasoconstriction and hypertension.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ1/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Potasio/metabolismo , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Canales de Potasio KCNQ/química , Canales de Potasio KCNQ/efectos de los fármacos , Canales de Potasio KCNQ/genética , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/genética , Microdominios de Membrana/metabolismo , Potenciales de la Membrana , Músculo Liso Vascular/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Transfección , Xenopus
2.
Cell Physiol Biochem ; 24(5-6): 325-34, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19910673

RESUMEN

Kv7 (KCNQ) proteins form a family of voltage-gated potassium channels that is comprised of five members, Kv7.1-Kv7.5. While Kv7.1 is crucial in the heart, the Kv7.2, Kv7.3, Kv7.4 and Kv7.5 channels contribute to the M-current in the nervous system. In addition to the brain, Kv7.5 is expressed in skeletal and smooth muscle, where its physiological role is currently under evaluation. Kv7 associations with KCNE accessory subunits (KCNE1-5) enhance channel diversity and their interaction provides mechanisms to respond to a variety of stimuli. KCNE peptides control the surface expression, voltage-dependence, kinetics of gating, unitary conductance, ion selectivity and pharmacology of several channels. KCNE subunits have been primarily studied in the heart; however, their activity in the brain and in many other tissues is being increasingly recognized. Here, we found that Kv7.5 and KCNE subunits are present in myoblasts. Therefore, oligomeric associations may underlie some Kv7.5 functional diversity in skeletal muscle. An extensive study in Xenopus oocytes and HEK-293 cells demonstrates that KCNE1 and KCNE3, but none of the other KCNE subunits, affect Kv7.5 currents. While KCNE1 slows activation and suppresses inward rectification, KCNE3 drastically inhibits Kv7.5 currents. In addition, KCNE1 increases Kv7.5 currents in HEK cells. Changes in gating and amplitude indicate functional interactions. Our results have physiological relevance since Kv7.5 is abundant in skeletal and smooth muscle and its association with KCNE peptides may fine-tune cellular responses.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Línea Celular , Fenómenos Electrofisiológicos , Humanos , Canales de Potasio KCNQ/genética , Músculo Esquelético/metabolismo , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Fase S , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA